875 resultados para OWL web ontology language
Resumo:
Continuous advancements in technology have led to increasingly comprehensive and distributed product development processes while in pursuit of improved products at reduced costs. Information associated with these products is ever changing, and structured frameworks have become integral to managing such fluid information. Ontologies and the Semantic Web have emerged as key alternatives for capturing product knowledge in both a human-readable and computable manner. The primary and conclusive focus of this research is to characterize relationships formed within methodically developed distributed design knowledge frameworks to ultimately provide a pervasive real-time awareness in distributed design processes. Utilizing formal logics in the form of the Semantic Web’s OWL and SWRL, causal relationships are expressed to guide and facilitate knowledge acquisition as well as identify contradictions between knowledge in a knowledge base. To improve the efficiency during both the development and operational phases of these “intelligent” frameworks, a semantic relatedness algorithm is designed specifically to identify and rank underlying relationships within product development processes. After reviewing several semantic relatedness measures, three techniques, including a novel meronomic technique, are combined to create AIERO, the Algorithm for Identifying Engineering Relationships in Ontologies. In determining its applicability and accuracy, AIERO was applied to three separate, independently developed ontologies. The results indicate AIERO is capable of consistently returning relatedness values one would intuitively expect. To assess the effectiveness of AIERO in exposing underlying causal relationships across product development platforms, a case study involving the development of an industry-inspired printed circuit board (PCB) is presented. After instantiating the PCB knowledge base and developing an initial set of rules, FIDOE, the Framework for Intelligent Distributed Ontologies in Engineering, was employed to identify additional causal relationships through extensional relatedness measurements. In a conclusive PCB redesign, the resulting “intelligent” framework demonstrates its ability to pass values between instances, identify inconsistencies amongst instantiated knowledge, and identify conflicting values within product development frameworks. The results highlight how the introduced semantic methods can enhance the current knowledge acquisition, knowledge management, and knowledge validation capabilities of traditional knowledge bases.
Resumo:
A web service is a collection of industry standards to enable reusability of services and interoperability of heterogeneous applications. The UMLS Knowledge Source (UMLSKS) Server provides remote access to the UMLSKS and related resources. We propose a Web Services Architecture that encapsulates UMLSKS-API and makes it available in distributed and heterogeneous environments. This is the first step towards intelligent and automatic UMLS services discovery and invocation by computer systems in distributed environments such as web.
Resumo:
Semantic Web technologies offer a promising framework for integration of disparate biomedical data. In this paper we present the semantic information integration platform under development at the Center for Clinical and Translational Sciences (CCTS) at the University of Texas Health Science Center at Houston (UTHSC-H) as part of our Clinical and Translational Science Award (CTSA) program. We utilize the Semantic Web technologies not only for integrating, repurposing and classification of multi-source clinical data, but also to construct a distributed environment for information sharing, and collaboration online. Service Oriented Architecture (SOA) is used to modularize and distribute reusable services in a dynamic and distributed environment. Components of the semantic solution and its overall architecture are described.
Resumo:
Technological and cultural factors influence access to health information on the web in multifarious ways. We evaluated structural differences and availability of communication services on the web in three diverse language and cultural groups: Chinese, English, and Spanish. A total of 382 web sites were analyzed: 144 were English language sites (38%), 129 were Chinese language sites (34%), and 108 were Spanish language sites (28%). We did not find technical differences in the number of outgoing links per domain or the total availability of communication services between the three groups. There were differences in the distribution of available services between Chinese and English sites. In the Chinese sites, there were more communication services between consumers and health experts. Our results suggest that the health-related web presence of these three cultural groups is technologically comparable, but reflects differences that may be attributable to cultural factors.
Resumo:
Previous research has demonstrated that adults are successful at visually tracking rigidly moving items, but experience great difficulties when tracking substance-like ‘‘pouring’’ items. Using a comparative approach, we investigated whether the presence/absence of the grammatical count–mass distinction influences adults and children’s ability to attentively track objects versus substances. More specifically, we aimed to explore whether the higher success at tracking rigid over substance-like items appears universally or whether speakers of classifier languages (like Japanese, not marking the object–substance distinction) are advantaged at tracking substances as compared to speakers of non-classifier languages (like Swiss German, marking the object–substance distinction). Our results supported the idea that language has no effect on low-level cognitive processes such as the attentive visual processing of objects and substances. We concluded arguing that the tendency to prioritize objects is universal and independent of specific characteristics of the language spoken.
Resumo:
The Semantic Web is an extension of the traditional Web in which meaning of information is well defined, thus allowing a better interaction between people and computers. To accomplish its goals, mechanisms are required to make explicit the semantics of Web resources, to be automatically processed by software agents (this semantics being described by means of online ontologies). Nevertheless, issues arise caused by the semantic heterogeneity that naturally happens on the Web, namely redundancy and ambiguity. For tackling these issues, we present an approach to discover and represent, in a non-redundant way, the intended meaning of words in Web applications, while taking into account the (often unstructured) context in which they appear. To that end, we have developed novel ontology matching, clustering, and disambiguation techniques. Our work is intended to help bridge the gap between syntax and semantics for the Semantic Web construction
Resumo:
Interlinking text documents with Linked Open Data enables the Web of Data to be used as background knowledge within document-oriented applications such as search and faceted browsing. As a step towards interconnecting the Web of Documents with the Web of Data, we developed DBpedia Spotlight, a system for automatically annotating text documents with DBpedia URIs. DBpedia Spotlight allows users to congure the annotations to their specic needs through the DBpedia Ontology and quality measures such as prominence, topical pertinence, contextual ambiguity and disambiguation condence. We compare our approach with the state of the art in disambiguation, and evaluate our results in light of three baselines and six publicly available annotation systems, demonstrating the competitiveness of our system. DBpedia Spotlight is shared as open source and deployed as a Web Service freely available for public use.
Resumo:
Interlinking text documents with Linked Open Data enables the Web of Data to be used as background knowledge within document-oriented applications such as search and faceted browsing. As a step towards interconnecting the Web of Documents with the Web of Data, we developed DBpedia Spotlight, a system for automatically annotating text documents with DBpedia URIs. DBpedia Spotlight allows users to configure the annotations to their specific needs through the DBpedia Ontology and quality measures such as prominence, topical pertinence, contextual ambiguity and disambiguation confidence. We compare our approach with the state of the art in disambiguation, and evaluate our results in light of three baselines and six publicly available annotation systems, demonstrating the competitiveness of our system. DBpedia Spotlight is shared as open source and deployed as a Web Service freely available for public use.
Resumo:
In the paper we report on the results of our experiments on the construction of the opinion ontology. Our aim is to show the benefits of publishing in the open, on the Web, the results of the opinion mining process in a structured form. On the road to achieving this, we attempt to answer the research question to what extent opinion information can be formalized in a unified way. Furthermore, as part of the evaluation, we experiment with the usage of Semantic Web technologies and show particular use cases that support our claims.
Resumo:
Recently, the Semantic Web has experienced signi�cant advancements in standards and techniques, as well as in the amount of semantic information available online. Even so, mechanisms are still needed to automatically reconcile semantic information when it is expressed in di�erent natural languages, so that access to Web information across language barriers can be improved. That requires developing techniques for discovering and representing cross-lingual links on the Web of Data. In this paper we explore the different dimensions of such a problem and reflect on possible avenues of research on that topic.
Resumo:
The Semantic Web is an extension of the traditional Web in which meaning of information is well defined, thus allowing a better interaction between people and computers. To accomplish its goals, mechanisms are required to make explicit the semantics of Web resources, to be automatically processed by software agents (this semantics being described by means of online ontologies). Nevertheless, issues arise caused by the semantic heterogeneity that naturally happens on the Web, namely redundancy and ambiguity. For tackling these issues, we present an approach to discover and represent, in a non-redundant way, the intended meaning of words in Web applications, while taking into account the (often unstructured) context in which they appear. To that end, we have developed novel ontology matching, clustering, and disambiguation techniques. Our work is intended to help bridge the gap between syntax and semantics for the Semantic Web construction.
Resumo:
Semantic Web aims to allow machines to make inferences using the explicit conceptualisations contained in ontologies. By pointing to ontologies, Semantic Web-based applications are able to inter-operate and share common information easily. Nevertheless, multilingual semantic applications are still rare, owing to the fact that most online ontologies are monolingual in English. In order to solve this issue, techniques for ontology localisation and translation are needed. However, traditional machine translation is difficult to apply to ontologies, owing to the fact that ontology labels tend to be quite short in length and linguistically different from the free text paradigm. In this paper, we propose an approach to enhance machine translation of ontologies based on exploiting the well-structured concept descriptions contained in the ontology. In particular, our approach leverages the semantics contained in the ontology by using Cross Lingual Explicit Semantic Analysis (CLESA) for context-based disambiguation in phrase-based Statistical Machine Translation (SMT). The presented work is novel in the sense that application of CLESA in SMT has not been performed earlier to the best of our knowledge.
Resumo:
The application of methodologies for building ontologies can im-prove ontology quality. However, such quality is not guaranteed because of the difficulties involved in ontology modelling. These difficulties are related to the inclusion of anomalies or bad practices within the ontology development. Sev-eral authors have provided lists of typical anomalies detected in ontologies dur-ing the last decade. In this context, our aim in this paper is to describe OOPS! (OntOlogy Pitfall Scanner!), a tool for detecting pitfalls in ontologies.
Resumo:
In this paper we present the MultiFarm dataset, which has been designed as a benchmark for multilingual ontology matching. The MultiFarm dataset is composed of a set of ontologies translated in different languages and the corresponding alignments between these ontologies. It is based on the OntoFarm dataset, which has been used successfully for several years in the Ontology Alignment Evaluation Initiative (OAEI). By translating the ontologies of the OntoFarm dataset into eight different languages – Chinese, Czech, Dutch, French, German, Portuguese, Russian, and Spanish – we created a comprehensive set of realistic test cases. Based on these test cases, it is possible to evaluate and compare the performance of matching approaches with a special focus on multilingualism.
Resumo:
Because of the growing availability of third-party APIs, services, widgets and any other reusable web component, mashup developers now face a vast amount of candidate components for their developments. Moreover, these components quite often are scattered in many different repositories and web sites, which makes difficult their selection or discovery. In this paper, we discuss the problem of component selection in Service-Oriented Architectures (SOA) and Mashup-Driven Development, and introduce the Linked Mashups Ontology (LiMOn), a model that allows describing mashups and their components for integrating and sharing mashup information such as categorization or dependencies. The model has allowed the building of an integrated, centralized metadirectory of web components for query and selection, which has served to evaluate the model. The metadirectory allows accessing various heterogeneous repositories of mashups and web components while using external information from the Linked Data cloud, helping mashup development.