942 resultados para Nonlinear static analysis
Resumo:
We present a broadband (460-980 nm) analysis of the nonlinear absorption processes in bulk ZnO, a large-bandgap material with potential blue-to-UV photonic device applications. Using an optical parametric amplifier we generated tunable 1-kHz repetition rate laser pulses and employed the Z-scan technique to investigate the nonlinear absorption spectrum of ZnO. For excitation wavelengths below 500 nm, we observed reverse saturable absorption due to one-photon excitation of the sample, agreeing with rate-equation modeling. Two-and three-photon absorption were observed from 540 to 980 nm. We also determined the spectral regions exhibiting mixture of nonlinear absorption mechanisms, which were confirmed by photoluminescence measurements. (C) 2010 Optical Society of America
Resumo:
The most ordinary finite element formulations for 3D frame analysis do not consider the warping of cross-sections as part of their kinematics. So the stiffness, regarding torsion, should be directly introduced by the user into the computational software and the bar is treated as it is working under no warping hypothesis. This approach does not give good results for general structural elements applied in engineering. Both displacement and stress calculation reveal sensible deficiencies for both linear and non-linear applications. For linear analysis, displacements can be corrected by assuming a stiffness that results in acceptable global displacements of the analyzed structure. However, the stress calculation will be far from reality. For nonlinear analysis the deficiencies are even worse. In the past forty years, some special structural matrix analysis and finite element formulations have been proposed in literature to include warping and the bending-torsion effects for 3D general frame analysis considering both linear and non-linear situations. In this work, using a kinematics improvement technique, the degree of freedom ""warping intensity"" is introduced following a new approach for 3D frame elements. This degree of freedom is associated with the warping basic mode, a geometric characteristic of the cross-section, It does not have a direct relation with the rate of twist rotation along the longitudinal axis, as in existent formulations. Moreover, a linear strain variation mode is provided for the geometric non-linear approach, for which complete 3D constitutive relation (Saint-Venant Kirchhoff) is adopted. The proposed technique allows the consideration of inhomogeneous cross-sections with any geometry. Various examples are shown to demonstrate the accuracy and applicability of the proposed formulation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In this paper a new boundary element method formulation for elastoplastic analysis of plates with geometrical nonlinearities is presented. The von Mises criterion with linear isotropic hardening is considered to evaluate the plastic zone. Large deflections are assumed but within the context of small strain. To derive the boundary integral equations the von Karman`s hypothesis is taken into account. An initial stress field is applied to correct the true stresses according to the adopted criterion. Isoparametric linear elements are used to approximate the boundary unknown values while triangular internal cells with linear shape function are adopted to evaluate the domain value influences. The nonlinear system of equations is solved by using an implicit scheme together with the consistent tangent operator derived along the paper. Numerical examples are presented to demonstrate the accuracy and the validity of the proposed formulation.
Resumo:
The inclined plane test (IPT) is commonly performed to measure the interface shear strength between different materials as those used in cover systems of landfills. The test, when interpreted according to European test Standards provides the static interface friction angle, usually assumed for 50 mm displacement and denoted as phi(stat)(50). However, if interpreted considering the several phases of the sliding process, the test is capable of yielding more realistic information about the interface shear strength such as differentiating interfaces which exhibit the same value of phi(stat)(50) but different behavior for displacement less than 50 mm. In this paper, the IPT is used to evaluate the interface shear strength of some materials usually present in cover liner systems of landfill. The results of the tests were analyzed for both, the static and the dynamic phases of the sliding and were interpreted based on the static initial friction angle, phi(0), and the limit friction angle, phi(lim). It is shown that depending on the sliding behavior of the interfaces, phi(stat)(50), which is usually adopted as the designing parameter in stability analysis, can be larger than phi(0) and phi(lim). (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The present research studies the behavior of reinforced concrete locking beams supported by two capped piles with the socket embedded; used as connections for pre-cast concrete structures. The effect provoked by locking the beam on the pile-caps when supported by the lateral socket walls was evaluated. Three-dimensional numerical analyses using software based on the finite element method (FEM) were developed considering the nonlinear physical behavior of the material. To evaluate the adopted software, a comparative analysis was made using the numerical and experimented results obtained from other software. In the pile caps studied, a variation in the wall thickness, socket interface, strut angle inclination and action on beam. The results show that the presence of a beam does not significantly change pile cap behavior and that the socket wall is able to effectively transfer the force from the beam to the pile caps. By the tensions on the bars of longitudinal reinforcement, it was possible to obtain the force on the tie and the strut angle inclination before the collapse of models. It was found that the angles present more inclinations than those used in the design, which was made based on a strut-and-tie model. More results are available at http://www.set.eesc.usp.br/pdf/download/2009ME_RodrigoBarros.pdf
Resumo:
This paper presents an analytical method for analyzing trusses with severe geometrically nonlinear behavior. The main objective is to find analytical solutions for trusses with different axial forces in the bars. The methodology is based on truss kinematics, elastic constitutive laws and equilibrium of nodal forces. The proposed formulation can be applied to hyper elastic materials, such as rubber and elastic foams. A Von Mises truss with two bars made by different materials is analyzed to show the accuracy of this methodology.
Resumo:
This paper addresses the development of a hybrid-mixed finite element formulation for the quasi-static geometrically exact analysis of three-dimensional framed structures with linear elastic behavior. The formulation is based on a modified principle of stationary total complementary energy, involving, as independent variables, the generalized vectors of stress-resultants and displacements and, in addition, a set of Lagrange multipliers defined on the element boundaries. The finite element discretization scheme adopted within the framework of the proposed formulation leads to numerical solutions that strongly satisfy the equilibrium differential equations in the elements, as well as the equilibrium boundary conditions. This formulation consists, therefore, in a true equilibrium formulation for large displacements and rotations in space. Furthermore, this formulation is objective, as it ensures invariance of the strain measures under superposed rigid body rotations, and is not affected by the so-called shear-locking phenomenon. Also, the proposed formulation produces numerical solutions which are independent of the path of deformation. To validate and assess the accuracy of the proposed formulation, some benchmark problems are analyzed and their solutions compared with those obtained using the standard two-node displacement/ rotation-based formulation.
Resumo:
The present analysis takes into account the acceleration term in the differential equation of motion to obtain exact dynamic solutions concerning the groundwater flow towards a well in a confined aquifer. The results show that the error contained in the traditional quasi-static solution is very small in typical situations.
Resumo:
Void fraction sensors are important instruments not only for monitoring two-phase flow, but for furnishing an important parameter for obtaining flow map pattern and two-phase flow heat transfer coefficient as well. This work presents the experimental results obtained with the analysis of two axially spaced multiple-electrode impedance sensors tested in an upward air-water two-phase flow in a vertical tube for void fraction measurements. An electronic circuit was developed for signal generation and post-treatment of each sensor signal. By phase shifting the electrodes supplying the signal, it was possible to establish a rotating electric field sweeping across the test section. The fundamental principle of using a multiple-electrode configuration is based on reducing signal sensitivity to the non-uniform cross-section void fraction distribution problem. Static calibration curves were obtained for both sensors, and dynamic signal analyses for bubbly, slug, and turbulent churn flows were carried out. Flow parameters such as Taylor bubble velocity and length were obtained by using cross-correlation techniques. As an application of the void fraction tested, vertical flow pattern identification could be established by using the probability density function technique for void fractions ranging from 0% to nearly 70%.
Resumo:
A two-dimensional numeric simulator is developed to predict the nonlinear, convective-reactive, oxygen mass exchange in a cross-flow hollow fiber blood oxygenator. The numeric simulator also calculates the carbon dioxide mass exchange, as hemoglobin affinity to oxygen is affected by the local pH value, which depends mostly on the local carbon dioxide content in blood. Blood pH calculation inside the oxygenator is made by the simultaneous solution of an equation that takes into account the blood buffering capacity and the classical Henderson-Hasselbach equation. The modeling of the mass transfer conductance in the blood comprises a global factor, which is a function of the Reynolds number, and a local factor, which takes into account the amount of oxygen reacted to hemoglobin. The simulator is calibrated against experimental data for an in-line fiber bundle. The results are: (i) the calibration process allows the precise determination of the mass transfer conductance for both oxygen and carbon dioxide; (ii) very alkaline pH values occur in the blood path at the gas inlet side of the fiber bundle; (iii) the parametric analysis of the effect of the blood base excess (BE) shows that V(CO2) is similar in the case of blood metabolic alkalosis, metabolic acidosis, or normal BE, for a similar blood inlet P(CO2), although the condition of metabolic alkalosis is the worst case, as the pH in the vicinity of the gas inlet is the most alkaline; (iv) the parametric analysis of the effect of the gas flow to blood flow ratio (Q(G)/Q(B)) shows that V(CO2) variation with the gas flow is almost linear up to Q(G)/Q(B) = 2.0. V(O2) is not affected by the gas flow as it was observed that by increasing the gas flow up to eight times, the V(O2) grows only 1%. The mass exchange of carbon dioxide uses the full length of the hollow-fiber only if Q(G)/Q(B) > 2.0, as it was observed that only in this condition does the local variation of pH and blood P(CO2) comprise the whole fiber bundle.
Resumo:
This work summarizes some results about static state feedback linearization for time-varying systems. Three different necessary and sufficient conditions are stated in this paper. The first condition is the one by [Sluis, W. M. (1993). A necessary condition for dynamic feedback linearization. Systems & Control Letters, 21, 277-283]. The second and the third are the generalizations of known results due respectively to [Aranda-Bricaire, E., Moog, C. H., Pomet, J. B. (1995). A linear algebraic framework for dynamic feedback linearization. IEEE Transactions on Automatic Control, 40, 127-132] and to [Jakubczyk, B., Respondek, W. (1980). On linearization of control systems. Bulletin del` Academie Polonaise des Sciences. Serie des Sciences Mathematiques, 28, 517-522]. The proofs of the second and third conditions are established by showing the equivalence between these three conditions. The results are re-stated in the infinite dimensional geometric approach of [Fliess, M., Levine J., Martin, P., Rouchon, P. (1999). A Lie-Backlund approach to equivalence and flatness of nonlinear systems. IEEE Transactions on Automatic Control, 44(5), 922-937]. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Vessel dynamic positioning (DP) systems are based on conventional PID-type controllers and an extended Kalman filter. However, they present a difficult tuning procedure, and the closed-loop performance varies with environmental or loading conditions since the dynamics of the vessel are eminently nonlinear. Gain scheduling is normally used to address the nonlinearity of the system. To overcome these problems, a sliding mode control was evaluated. This controller is robust to variations in environmental and loading conditions, it maintains performance and stability for a large range of conditions, and presents an easy tuning methodology. The performance of the controller was evaluated numerically and experimentally in order to address its effectiveness. The results are compared with those obtained from conventional PID controller. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Hydrodynamic studies were conducted in a semi-cylindrical spouted bed column of diameter 150 mm, height 1000 mm, conical base included angle of 60 degrees and inlet orifice diameter 25 mm. Pressure transducers at several axial positions were used to obtain pressure fluctuation time series with 1.2 and 2.4 mm glass beads at U/U-ms from 0.3 to 1.6, and static bed depths from 150 to 600 mm. The conditions covered several flow regimes (fixed bed, incipient spouting, stable spouting, pulsating spouting, slugging, bubble spouting and fluidization). Images of the system dynamics were also acquired through the transparent walls with a digital camera. The data were analyzed via statistical, mutual information theory, spectral and Hurst`s Rescaled Range methods to assess the potential of these methods to characterize the spouting quality. The results indicate that these methods have potential for monitoring spouted bed operation.
Resumo:
We are concerned with determining values of, for which there exist nodal solutions of the boundary value problems u" + ra(t) f(u) = 0, 0 < t < 1, u(O) = u(1) = 0. The proof of our main result is based upon bifurcation techniques.
Resumo:
Power system small signal stability analysis aims to explore different small signal stability conditions and controls, namely: (1) exploring the power system security domains and boundaries in the space of power system parameters of interest, including load flow feasibility, saddle node and Hopf bifurcation ones; (2) finding the maximum and minimum damping conditions; and (3) determining control actions to provide and increase small signal stability. These problems are presented in this paper as different modifications of a general optimization to a minimum/maximum, depending on the initial guesses of variables and numerical methods used. In the considered problems, all the extreme points are of interest. Additionally, there are difficulties with finding the derivatives of the objective functions with respect to parameters. Numerical computations of derivatives in traditional optimization procedures are time consuming. In this paper, we propose a new black-box genetic optimization technique for comprehensive small signal stability analysis, which can effectively cope with highly nonlinear objective functions with multiple minima and maxima, and derivatives that can not be expressed analytically. The optimization result can then be used to provide such important information such as system optimal control decision making, assessment of the maximum network's transmission capacity, etc. (C) 1998 Elsevier Science S.A. All rights reserved.