962 resultados para Network dynamics
Distributed Estimation Over an Adaptive Incremental Network Based on the Affine Projection Algorithm
Resumo:
We study the problem of distributed estimation based on the affine projection algorithm (APA), which is developed from Newton`s method for minimizing a cost function. The proposed solution is formulated to ameliorate the limited convergence properties of least-mean-square (LMS) type distributed adaptive filters with colored inputs. The analysis of transient and steady-state performances at each individual node within the network is developed by using a weighted spatial-temporal energy conservation relation and confirmed by computer simulations. The simulation results also verify that the proposed algorithm provides not only a faster convergence rate but also an improved steady-state performance as compared to an LMS-based scheme. In addition, the new approach attains an acceptable misadjustment performance with lower computational and memory cost, provided the number of regressor vectors and filter length parameters are appropriately chosen, as compared to a distributed recursive-least-squares (RLS) based method.
Resumo:
Susceptible-infective-removed (SIR) models are commonly used for representing the spread of contagious diseases. A SIR model can be described in terms of a probabilistic cellular automaton (PCA), where each individual (corresponding to a cell of the PCA lattice) is connected to others by a random network favoring local contacts. Here, this framework is employed for investigating the consequences of applying vaccine against the propagation of a contagious infection, by considering vaccination as a game, in the sense of game theory. In this game, the players are the government and the susceptible newborns. In order to maximize their own payoffs, the government attempts to reduce the costs for combating the epidemic, and the newborns may be vaccinated only when infective individuals are found in their neighborhoods and/or the government promotes an immunization program. As a consequence of these strategies supported by cost-benefit analysis and perceived risk, numerical simulations show that the disease is not fully eliminated and the government implements quasi-periodic vaccination campaigns. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In order to model the synchronization of brain signals, a three-node fully-connected network is presented. The nodes are considered to be voltage control oscillator neurons (VCON) allowing to conjecture about how the whole process depends on synaptic gains, free-running frequencies and delays. The VCON, represented by phase-locked loops (PLL), are fully-connected and, as a consequence, an asymptotically stable synchronous state appears. Here, an expression for the synchronous state frequency is derived and the parameter dependence of its stability is discussed. Numerical simulations are performed providing conditions for the use of the derived formulae. Model differential equations are hard to be analytically treated, but some simplifying assumptions combined with simulations provide an alternative formulation for the long-term behavior of the fully-connected VCON network. Regarding this kind of network as models for brain frequency signal processing, with each PLL representing a neuron (VCON), conditions for their synchronization are proposed, considering the different bands of brain activity signals and relating them to synaptic gains, delays and free-running frequencies. For the delta waves, the synchronous state depends strongly on the delays. However, for alpha, beta and theta waves, the free-running individual frequencies determine the synchronous state. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Phase-locked loops (PLLs) are widely used in applications related to control systems and telecommunication networks. Here we show that a single-chain master-slave network of third-order PLLs can exhibit stationary, periodic and chaotic behaviors, when the value of a single parameter is varied. Hopf, period-doubling and saddle-saddle bifurcations are found. Chaos appears in dissipative and non-dissipative conditions. Thus, chaotic behaviors with distinct dynamical features can be generated. A way of encoding binary messages using such a chaos-based communication system is suggested. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A network of Kuramoto oscillators with different natural frequencies is optimized for enhanced synchronizability. All node inputs are normalized by the node connectivity and some important properties of the network Structure are determined in this case: (i) optimized networks present a strong anti-correlation between natural frequencies of adjacent nodes: (ii) this anti-correlation should be as high as possible since the average path length between nodes is maintained as small as in random networks: and (iii) high anti-correlation is obtained without any relation between nodes natural frequencies and the degree of connectivity. We also propose a network construction model with which it is shown that high anti-correlation and small average paths may be achieved by randomly rewiring a fraction of the links of a totally anti-correlated network, and that these networks present optimal synchronization properties. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Transmission and switching in digital telecommunication networks require distribution of precise time signals among the nodes. Commercial systems usually adopt a master-slave (MS) clock distribution strategy building slave nodes with phase-locked loop (PLL) circuits. PLLs are responsible for synchronizing their local oscillations with signals from master nodes, providing reliable clocks in all nodes. The dynamics of a PLL is described by an ordinary nonlinear differential equation, with order one plus the order of its internal linear low-pass filter. Second-order loops are commonly used because their synchronous state is asymptotically stable and the lock-in range and design parameters are expressed by a linear equivalent system [Gardner FM. Phaselock techniques. New York: John Wiley & Sons: 1979]. In spite of being simple and robust, second-order PLLs frequently present double-frequency terms in PD output and it is very difficult to adapt a first-order filter in order to cut off these components [Piqueira JRC, Monteiro LHA. Considering second-harmonic terms in the operation of the phase detector for second order phase-locked loop. IEEE Trans Circuits Syst [2003;50(6):805-9; Piqueira JRC, Monteiro LHA. All-pole phase-locked loops: calculating lock-in range by using Evan`s root-locus. Int J Control 2006;79(7):822-9]. Consequently, higher-order filters are used, resulting in nonlinear loops with order greater than 2. Such systems, due to high order and nonlinear terms, depending on parameters combinations, can present some undesirable behaviors, resulting from bifurcations, as error oscillation and chaos, decreasing synchronization ranges. In this work, we consider a second-order Sallen-Key loop filter [van Valkenburg ME. Analog filter design. New York: Holt, Rinehart & Winston; 1982] implying a third order PLL The resulting lock-in range of the third-order PLL is determined by two bifurcation conditions: a saddle-node and a Hopf. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Second-order phase locked loops (PLLs) are devices that are able to provide synchronization between the nodes in a network even under severe quality restrictions in the signal propagation. Consequently, they are widely used in telecommunication and control. Conventional master-slave (M-S) clock-distribution systems are being, replaced by mutually connected (MC) ones due to their good potential to be used in new types of application such as wireless sensor networks, distributed computation and communication systems. Here, by using an analytical reasoning, a nonlinear algebraic system of equations is proposed to establish the existence conditions for the synchronous state in an MC PLL network. Numerical experiments confirm the analytical results and provide ideas about how the network parameters affect the reachability of the synchronous state. The phase-difference oscillation amplitudes are related to the node parameters helping to design PLL neural networks. Furthermore, estimation of the acquisition time depending on the node parameters allows the performance evaluation of time distribution systems and neural networks based on phase-locked techniques. (c) 2008 Elsevier GmbH. All rights reserved.
Resumo:
The discrete-time neural network proposed by Hopfield can be used for storing and recognizing binary patterns. Here, we investigate how the performance of this network on pattern recognition task is altered when neurons are removed and the weights of the synapses corresponding to these deleted neurons are divided among the remaining synapses. Five distinct ways of distributing such weights are evaluated. We speculate how this numerical work about synaptic compensation may help to guide experimental studies on memory rehabilitation interventions.
Resumo:
In the development of a ventricular assist device, computational fluid dynamics (CFD) analysis is an efficient tool to obtain the best design before making the final prototype. In this study, different designs of a centrifugal blood pump were developed to investigate flow characteristics and performance. This study assumed the blood flow as being an incompressible homogeneous Newtonian fluid. A constant velocity was applied at the inlet; no slip boundary conditions were applied at device wall; and pressure boundary conditions were applied at the outlet. The CFD code used in this work was based on the finite volume method. In the future, the results of CFD analysis can be compared with flow visualization and hemolysis tests.
Resumo:
Using the network random generation models from Gustedt (2009)[23], we simulate and analyze several characteristics (such as the number of components, the degree distribution and the clustering coefficient) of the generated networks. This is done for a variety of distributions (fixed value, Bernoulli, Poisson, binomial) that are used to control the parameters of the generation process. These parameters are in particular the size of newly appearing sets of objects, the number of contexts in which new elements appear initially, the number of objects that are shared with `parent` contexts, and, the time period inside which a context may serve as a parent context (aging). The results show that these models allow to fine-tune the generation process such that the graphs adopt properties as can be found in real world graphs. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The competition among the companies depends on the velocity and efficience they can create and commercialize knowledge in a timely and cost-efficient manner. In this context, collaboration emerges as a reaction to the environmental changes. Although strategic alliances and networks have been exploited in the strategic literature for decades, the complexity and continuous usage of these cooperation structures, in a world of growing competition, justify the continuous interest in both themes. This article presents a scanning of the contemporary academic production in strategic alliances and networks, covering the period from January 1997 to august 2007, based on the top five journals accordingly to the journal of Citation Report 2006 in the business and management categories simultaneously. The results point to a retraction in publications about strategic alliances and a significant growth in the area of strategic. networks. The joint view of strategic alliances and networks, cited by some authors a the evolutionary path of study, still did not appear salient. The most cited topics found in the alliance literature are the governance structure, cooperation, knowledge transfer, culture, control, trust, alliance formation,,previous experience, resources, competition and partner selection. The theme network focuses mainly on structure, knowledge transfer and social network, while the joint vision is highly concentrated in: the subjects of alliance formation and the governance choice.
Resumo:
In Rondonia State, Brazil, settlement processes have cleared 68,000 km 2 of tropical forests since the 1970s. The intensity of deforestation has differed by region depending on driving factors like roads and economic activities. Different histories of land-use activities and rates of change have resulted in mosaics of forest patches embedded in an agricultural matrix. Yet, most assessments of deforestation and its effects on vegetation, soil and water typically focus on landscape patterns of current conditions, yet historical deforestation dynamics can influence current conditions strongly. Here, we develop and describe the use of four land-use dynamic indicators to capture historical land-use changes of catchments and to measure the rate of deforestation (annual deforestation rate), forest regeneration level (secondary forest mean proportion), time since disturbance (mean time since deforestation) and deforestation profile (deforestation profile curvature). We used the proposed indices to analyze a watershed located in central Rondonia. Landsat TM and ETM+ images were used to produce historical land-use maps of the last 18 years, each even year from 1984 to 2002 for 20 catchments. We found that the land-use dynamics indicators are able to distinguish catchments with different land-use change profiles. Four categories of historical land-use were identified: old and dominant pasture cover on small properties, recent deforestation and dominance of secondary growth, old extensive pastures and large forest remnants and, recent deforestation, pasture and large forest remnants. Knowing historical deforestation processes is important to develop appropriate conservation strategies and define priorities and actions for conserving forests currently under deforestation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The tomato red spider mite, Tetranychus evansi (Acari: Tetranychidae) was recently introduced in Africa and Europe, where there is an increasing interest in using natural enemies to control this pest on solanaceous crops. Two promising candidates for the control of T. evansi were identified in South America, the fungal pathogen, Neozygites floridana and the predatory mite Phytoseiulus longipes. In this study, population dynamics of T. evansi and its natural enemies together with the influence of environmental conditions on these organisms were evaluated during four crop cycles in the field and in a protected environment on nightshade and tomato plants with and without application of chemical pesticides. N. floridana was the only natural enemy found associated with T. evansi in the four crop cycles under protected environment but only in the last crop cycle in the field. In the treatments where the fungus appeared, reduction of mite populations was drastic. N. floridana appeared in tomato plants even when the population density of T. evansi was relatively low (less than 10 mites/3.14 cm(2) of leaf area) and even at this low population density, the fungus maintained infection rates greater than 50%. The application of pesticides directly affected the fungus by delaying epizootic initiation and contributing to lower infection rates than unsprayed treatments. Rainfalls did not have an apparent impact on mite populations. These results indicate that the pathogenic fungus, N. floridana can play a significant role in the population dynamics of T. evansi, especially under protected environment, and has the potential to control this pest in classical biological control programs. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Nutrient dynamics in tropical soils sustaining forage grasses are still poorly understood. We conducted a study to evaluate the effect of combined N and S fertilizer rates on the growth of `Marandu` palisade grass [Brachiaria brizantha (Hochst. ex A. Rich.) Stapf], uptake of these elements from the soil by plants, soil organic matter concentration, soil pH, and the mineral and organic fractions of N and S in an Entisol. Combinations of five N rates (0, 100, 200, 300, and 400 g N m(-3)) with five S rates (0, 10, 20, 30, and 40 g S m(-3)) were evaluated in a partial 5 x 5 factorial in a pot experiment, with and without plants. Nitrogen and S were supplied as NH(4)NO(3) and CaSO(4)center dot 2H(2)O, respectively. The N addition in excess did not enhance the palisade grass production due to low plant-available Sin the soil. The supply of low rates of S with N greatly improved the overall N uptake efficiency by the forage plant. The contents of total N, NO(3)(-)-N, and NH(4)(+)-N in the soil varied with N rate and with N uptake by the plants. The association of palisade grass with S fertilization increased the ester-bonded S fraction in the soil. The results suggest that soil residual S could be a potential source of S for plants. Proper N and S fertilizer rates promoted increased grass production due to increased uptake of these nutrients and the dynamics of the organic N and S fractions and mineral fractions in this tropical soil.
Resumo:
The short-term effects of surface lime application and black oat (Avena strigosa Schreb.) residues, with or without N fertilization, were evaluated in a long-term no-till (NT) system on a sandy clay loam, a kaolinitic, thermic Typic Hapludox from the state of Parana, Brazil. The main plot treatments were: control and dolomitic lime applied on soil surface at 8 Mg ha(-1). Three treatments with crop residues were evaluated on the subplots: (i) fallow, (ii) black oat residues, and (iii) black oat residues aft er N fertilization at 180 kg ha(-1). Black oat dry biomass was not affected by the treatments during 3 yr. Surface liming increased soil pH, microbial biomass, microbial activity, and bacterial/fungal ratio at the soil surface (0-5 cm), resulting in increased amino acid turnover, water-soluble humic substances formation, and N mineralization and nitrification. While the application of black oat did increase the soil pH, overall it had much less effect on soil biological processes and C and N pools than did lime. We concluded that black oat cannot replace the need for lime to optimize crop production in these tropical NT systems. In the long term, however, black oat should aid in the amelioration of acidity and replenishment of soil organic C pools and should help reduce erosion. Overall, this study suggests that overapplication of inorganic fertilizer N may occur in some tropical NT systems. Further experiments are required in NT systems to investigate the use of slow-release N fertilizers in combination with lime and black oat as a mechanism to reduce acidification and promote sustainability.