974 resultados para Negative dispersion mirrors
Resumo:
Biochemical pathways involving chemical kinetics in medium concentrations (i.e., at mesoscale) of the reacting molecules can be approximated as chemical Langevin equations (CLE) systems. We address the physically consistent non-negative simulation of the CLE sample paths as well as the issue of non-Lipschitz diffusion coefficients when a species approaches depletion and any stiffness due to faster reactions. The non-negative Fully Implicit Stochastic alpha (FIS alpha) method in which stopped reaction channels due to depleted reactants are deleted until a reactant concentration rises again, for non-negativity preservation and in which a positive definite Jacobian is maintained to deal with possible stiffness, is proposed and analysed. The method is illustrated with the computation of active Protein Kinase C response in the Protein Kinase C pathway. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In lean premixed pre-vaporized (LPP) combustion, controlled atomization, dispersion and vaporization of different types of liquid fuel in the premixer are the key factors required to stabilize the combustion process and improve the efficiency. The dispersion and vaporization process for biofuels and conventional fuels sprayed into a crossflow pre-mixer have been simulated and analyzed with respect to vaporization rate, degree of mixedness and homogeneity. Two major biofuels under investigation are Ethanol and Rapeseed Methyl Esters (RME), while conventional fuels are gasoline and jet-A. First, the numerical code is validated by comparing with the experimental data of single n-heptane and decane droplet evaporating under both moderate and high temperature convective air now. Next, the spray simulations were conducted with monodispersed droplets with an initial diameter of 80 mu m injected into a turbulent crossflow of air with a typical velocity of 10 m/s and temperature of around 800K. Vaporization time scales of different fuels are found to be very different. The droplet diameter reduction and surface temperature rise were found to be strongly dependent on the fuel properties. Gasoline droplet exhibited a much faster vaporization due a combination of higher vapor pressure and smaller latent heat of vaporization compared to other fuels. Mono-dispersed spray was adopted with the expectation of achieving more homogeneous fuel droplet size than poly-dispersed spray. However, the diameter histogram in the zone near the pre-mixer exit shows a large range of droplet diameter distributions for all the fuels. In order to improve the vaporization performance, fuels were pre-heated before injection. Results show that the Sauter mean diameter of ethanol improved from 52.8% of the initial injection size to 48.2%, while jet-A improved from 48.4% to 18.6% and RME improved from 63.5% to 31.3%. The diameter histogram showed improved vaporization performance of jet-A. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
By using the perturbation technique, a Kortewege-de-Vries (K-dV) equation for a multicomponent plasma with negative ions and isothermal electrons has been derived. We have discussed the stationary solutions of K-dV equation and it has shown that in the presece of multiple ions, the amplitude of solitons exhibits interesting behaviour, especiallY when the negative ions are present.
Resumo:
Homogeneous thin films of Sr(0.6)Ca(0.4)TiO(3) (SCT40) and asymmetric multilayer of SrTiO(3) (STO) and CaTiO(3) (CTO) were fabricated on Pt/Ti/SiO(2)/Si substrates by using pulsed laser deposition technique. The electrical behavior of films was observed within a temperature range of 153 K-373 K. A feeble dielectric peak of SCT40 thin film at 273 K is justified as paraelectric to antiferroelectric phase transition. Moreover, the Curie-Weiss temperature, determined from the epsilon'(T) data above the transition temperature is found to be negative. Using Landau theory, the negative Curie-Weiss temperature is interpreted in terms of an antiferroelectric transition. The asymmetric multilayer exhibits a broad dielectric peak at 273 K. and is attributed to interdiffusion at several interfaces of multilayer. The average dielectric constants for homogeneous Sr(0.6)Ca(0.4)TiO(3) films (similar to 650) and asymmetric multilayered films (similar to 350) at room temperature are recognized as a consequence of grain size effect. Small frequency dispersion in the real part of the dielectric constants and relatively low dielectric losses for both cases ensure high quality of the films applicable for next generation integrated devices. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In order to improve the tracking and erosion performance of outdoor polymeric silicone rubber (SR) insulators used in HV power transmission lines, micron sized inorganic fillers are usually added to the base SR matrix. In addition, insulators used in high voltage dc transmission lines are designed to have increased creepage distance to mitigate the tracking and erosion problems. ASTM D2303 standard gives a procedure for finding the tracking and erosion resistance of outdoor polymeric insulator weathershed material samples under laboratory conditions for ac voltages. In this paper, inclined plane (IP) tracking and erosion tests similar to ASTM D2303 were conducted under both positive and negative dc voltages for silicone rubber samples filled with micron and nano sized particles to understand the phenomena occurring during such tests. Micron sized Alumina Trihydrate (ATH) and nano sized alumina fillers were added to silicone rubber matrix to improve the resistance to tracking and erosion. The leakage current during the tests and the eroded mass at the end of the tests were monitored. Scanning Electron Microscopy (SEM) and Energy dispersive Xray (EDX) studies were conducted to understand the filler dispersion and the changes in surface morphology in both nanocomposite and microcomposite samples. The results suggest that nanocomposites performed better than microcomposites even for a small filler loading (4%) for both positive and negative dc stresses. It was also seen that the tracking and erosion performance of silicone rubber is better under negative dc as compared to positive dc voltage. EDX studies showed migration of different ions onto the surface of the sample during the IP test under positive dc which has led to an inferior performance as compared to the performance under negative dc.
Resumo:
In this paper, an ultrasonic wave propagation analysis in single-walled carbon nanotube (SWCNT) is re-studied using nonlocal elasticity theory, to capture the whole behaviour. The SWCNT is modeled using Flugge's shell theory, with the wall having axial, circumferential and radial degrees of freedom and also including small scale effects. Nonlocal governing equations for this system are derived and wave propagation analysis is also carried out. The revisited nonlocal elasticity calculation shows that the wavenumber tends to infinite at certain frequencies and the corresponding wave velocity tends to zero at those frequencies indicating localization and stationary behavior. This frequency is termed as escape frequency. This behavior is observed only for axial and radial waves in SWCNT. It has been shown that the circumferential waves will propagate dispersively at higher frequencies in nonlocality. The magnitudes of wave velocities of circumferential waves are smaller in nonlocal elasticity as compared to local elasticity. We also show that the explicit expressions of cut-off frequency depend on the nonlocal scaling parameter and the axial wavenumber. The effect of axial wavenumber on the ultrasonic wave behavior in SWCNTs is also discussed. The present results are compared with the corresponding results (for first mode) obtained from ab initio and 3-D elastodynamic continuum models. The acoustic phonon dispersion relation predicted by the present model is in good agreement with that obtained from literature. The results are new and can provide useful guidance for the study and design of the next generation of nanodevices that make use of the wave propagation properties of single-walled carbon nanotubes.
Resumo:
In this article, we show with some formalism that infinite flexible structural acoustic waveguides have a general form for the dispersion equation. The dispersion equation of all such waveguides should conform to a generic form. This allows us to bring out the common features of structural acoustic waveguides. We take three examples to demonstrate this fact, namely, the rectangular, the circular cylindrical and the elliptical geometries. Where necessary, the equations are simplified for applicability to a particular frequency-regime before demonstrating the conformance to the generic form of the dispersion relation. It is then shown that the coupled wavenumber solutions of all these systems can be represented on a single schematic.
Resumo:
Protein nanoparticles (NPs) have found significant applications in drug delivery due to their inherent biocompatibility, which is attributed to their natural origin. In this study, bovine serum abumin (BSA) nanoparticles were introduced in multilayer thin film via layer-by-layer self-assembly for localized delivery of the anticancer drug Doxorubicin (Dox). BSA nanoparticles (similar to 100 nm) show a high negative zeta potential in aqueous medium (-55 mV) and form a stable dispersion in water without agglomeration for a long period. Hence, BSA NPs can be assembled on a substrate via layer-by-layer approach using a positively charged polyelectrolyte (chitosan in acidic medium). The protein nature of these BSA nanoparticles ensures the biocompatibility of the film, whereas the availability of functional groups on this protein allows one to tune the property of the self-assembly to have a pH-dependent drug release profile. The growth of multilayer thin film was monitored by UV-visible spectroscopy, and the films were further characterized by atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The drug release kinetics of these BSA nanoparticles and their self-assembled thin film has been compared at a physiological pH of 7.4 and an acidic pH of 6.4.
Resumo:
We present here an improvisation of HNN (Panchal, Bhavesh et al., 2001) called RD 3D HNCAN for backbone (HN, CA and N-15) assignment in both folded and unfolded proteins. This is a reduced dimensionality experiment which employs CA chemical shifts to improve dispersion. Distinct positive and negative peak patterns of various triplet segments along the polypeptide chain observed in HNN are retained and these provide start and check points for the sequential walk. Because of co-incrementing of CA and N-15, peaks along one of the dimensions appear at sums and differences of the CA and N-15 chemical shifts. This changes the backbone assignment protocol slightly and we present this in explicit detail. The performance of the experiment has been demonstrated using Ubiquitin and Plasmodium falciparum P2 proteins. The experiment is particularly valuable when two neighboring amino acid residues have nearly identical backbone N-15 chemical shifts. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The synthesis of THF coordinated aluminium nanoparticles by the solvated metal atom dispersion (SMAD) method is described. These colloids are not stable with respect to precipitation of aluminium nanoparticles. The precipitated aluminium nanopowder is highly pyrophoric. Highly monodisperse colloidal aluminium nanoparticles (3.1 +/- 0.6 nm) stabilized by a capping agent, hexadecyl amine (HDA), have also been prepared by the SMAD method. They are stable towards precipitation of particles for more than a week. The Al-HDA nanoparticles are not as pyrophoric as the Al-THF samples. Particles synthesized in this manner were characterized by high-resolution electron microscopy and powder X-ray diffraction. Annealing of the Al-HDA nanoparticles resulted in carbonization of the capping agent on the surface of the particles which imparts air stability to them. Carbonization of the capping agent was established using Raman spectroscopy and TEM. The annealed aluminium nanoparticles were found to be stable even upon their exposure to air for over a month which was evident from the powder XRD, TGA/DSC, and TEM studies. The successful passivation was further confirmed with the determination of high active aluminium content (95 wt%) upon exposure and storage under air.
Resumo:
In this paper, ultrasonic wave propagation analysis in fluid filled single-walled carbon nanotube (SWCNT) is studied using nonlocal elasticity theory. The SWCNT is modeled using Flugge's shell theory, with the wall having axial, circumferential and radial degrees of freedom and also including small scale effects. The fluid inside the SWCNT is assumed as water. Nonlocal governing equations for this system are derived and wave propagation analysis is also carried out. The presence of fluid in SWCNT alters the ultrasonic wave dispersion behavior. The wavenumber and wave velocity are smaller in presence of fluid as compared to the empty SWCNT. The nonlocal elasticity calculation shows that the wavenumber tends to reach the continuum limit at certain frequencies and the corresponding wave velocity tends to zero at those frequencies indicating localization and stationary behavior. It has been shown that the circumferential. waves will propagate non-dispersively at higher frequencies in nonlocality. The magnitudes of wave velocities of circumferential waves are smaller in nonlocal elasticity as compared to local elasticity. We also show that the cut-off frequency depend on the nonlocal scaling parameter and also on the density of the fluid inside the SWCNT, and the axial wavenumber, as the fluid becomes denser the cut-off frequency decreases. The effect of axial wavenumber on the ultrasonic wave behavior in SWCNTS filled with water is also discussed.
Resumo:
This article aims to obtain damage-tolerant designs with minimum weight for a laminated composite structure using genetic algorithm. Damage tolerance due to impacts in a laminated composite structure is enhanced by dispersing the plies such that too many adjacent plies do not have the same angle. Weight of the structure is minimized and the Tsai-Wu failure criterion is considered for the safe design. Design variables considered are the number of plies and ply orientation. The influence of dispersed ply angles on the weight of the structure for a given loading conditions is studied by varying the angles in the range of 0 degrees-45 degrees, 0 degrees-60 degrees and 0 degrees-90 degrees at intervals of 5 degrees and by using specific ply angles tailored to loading conditions. A comparison study is carried out between the conventional stacking sequence and the stacking sequence with dispersed ply angles for damage-tolerant weight minimization and some useful designs are obtained. Unconventional stacking sequence is more damage tolerant than the conventional stacking sequence is demonstrated by performing a finite element analysis under both tensile as well as compressive loading conditions. Moreover, a new mathematical function called the dispersion function is proposed to measure the dispersion of ply angles in a laminate. The approach for dispersing ply angles to achieve damage tolerance is especially suited for composite material design space which has multiple local minima.
Resumo:
Tropical tree species vary widely in their pattern of spatial dispersion. We focus on how seed predation may modify seed deposition patterns and affect the abundance and dispersion of adult trees in a tropical forest in India. Using plots across a range of seed densities, we examined whether seed predation levels by terrestrial rodents varied across six large-seeded, bird-dispersed tree species. Since inter-specific variation in density-dependent seed mortality may have downstream effects on recruitment and adult tree stages, we determined recruitment patterns close to and away from parent trees, along with adult tree abundance and dispersion patterns. Four species (Canarium resiniferum, Dysoxylum binectariferum, Horsfieldia kingii, and Prunus ceylanica) showed high predation levels (78.5-98.7%) and increased mortality with increasing seed density, while two species, Chisocheton cumingianus and Polyalthia simiarum, showed significantly lower seed predation levels and weak density-dependent mortality. The latter two species also had the highest recruitment near parent trees, with most abundant and aggregated adults. The four species that had high seed mortality had low recruitment under parent trees, were rare, and had more spaced adult tree dispersion. Biotic dispersal may be vital for species that suffer density-dependent mortality factors under parent trees. In tropical forests where large vertebrate seed dispersers but not seed predators are hunted, differences in seed vulnerability to rodent seed predation and density-dependent mortality can affect forest structure and composition.