949 resultados para Nano oxide doped MgB2
Resumo:
A conductive carbon ceramic composite electrode (CCE) comprised of cc-type 1:12 phosphomolybdic acid (PMo12) and carbon powder in an organically modified silicate matrix was fabricated using a sol-gel method and characterized by scanning electron microscopy, cyclic voltammetry, and Osteryoung square-wave voltammetry. Osteryoung square-wave voltammograms of the modified electrode immersed in different acidic aqueous solutions present the dependence of current and redox potential on pH. The PMo12-doped CCE shows more reversible reaction kinetics, good stability and reproducibility, especially the renewal repeatability by simple polishing in the event of surface fouling or dopant leaching. Moreover, the modified electrode shows good catalytic activity for the electrochemical reduction of bromate.
Resumo:
Bright blue electroluminescent devices have been fabricated using poly (N-vinylcarbazole) (PVK) doped with perylene as the emissive layer, poly(p-phenylenevinylene) (PPV) as the hole-transporting layer, 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), tris(8-hydroxyquinoline)aluminum (Alq(3)) as the electron-transporting layer, and Al as the cathode. A luminance of 700 cd/m(2) and a luminescent efficiency of 0.8% are achieved at a drive voltage of 36 V. In the experiment, it is found that the introduction of electron-transporting layer PBD has a great effect on the emissive color of the electroluminescent devices prepared by PVK doped with perylene. Yellow-green emission is observed from the device structure of glass substrate/indium-tin-oxide/PVK:perylene/Al. The possible emissive mechanisms are given. The effect of the transporting layer on the electroluminescence is also discussed. (C) 1997 Elsevier Science S.A.
Resumo:
Chromatography-amperometric detection of nitrite with a polypyrrole modified glassy carbon electrode doped with tungstodiphosphate anion (Dawson-type P2W18O626-/PPy/GC electrode) based on its electrocatalytic reduction of nitrite is described. The cyclic and hydrodynamic voltammetry of nitrite at the P2W18O626-/PPy/GC electrode was studied. The factors affecting the detection of nitrite and the analytical performance of the modified electrode in flowing stream were investigated. The results show that the modified electrode has a good sensitivity (the limit of detection is 1 mu mol dm(-3)) and a satisfactory reproducibility (RSD = 3.78%, N = 21). The modified electrode was used in the chromatographic detection of nitrite spiked in the liquid from a tin of mushrooms and the mineralized spring water. It was found that the modified electrode exhibited good selectivity for nitrite.
Resumo:
The electrochemical behavior of Dawson-type P2W18O626- adsorbed on a glassy carbon electrode and doped in a polypyrrole film electrode was described. These modified electrodes all display catalytic activity for nitrite reduction, either in acid solutions or in pH > 4.0 solutions.
Resumo:
La-0.8Sr(0).2CoO(3) (LSCO) oxide powder was prepared using the adsorption properties of cellulose. The preparation process was studied by XRD, FTIR, TG-DTA and CO2-TPD techniques. The results of XRD, IR and TG-DTA testified that cellulose could successfully reserve the homogeneity of the solution system to the solid precursor. During the early stage of pyrolysis, cellulose was partially oxidized, and some COO- groups appeared in its texture, which were then complexed with the adsorbed metal ions, and effectively suppressed the aggregation of metal ions. Formation of a pure perovskite and the properties of the powder resulted were found to be significantly influenced by the cellulose to metal nitrate ratio. Also the properties of the resulting powder were greatly influenced by the calcination conditions. If the produced carbon dioxide could not be eluted in time, carbonate would be formed in the bulk. Hence, a high calcination temperature (> 800 degreesC) was needed to acquire a pure phase LSCO. At optimized conditions, nano-crystal LSCO could be obtained at as low as 500 degreesC.
Resumo:
A series of nano-sized Ni/Al2O3 and Ni/La-Al2O3 catalysts that possess high activities for NH3 decomposition have been successfully synthesized by a coprecipitation method. The catalytic performance was investigated under the atmospheric conditions and a significant enhancement in the activity after the introduction of La was observed. Aiming to study the influence of La promoter on the physicochemical properties, we characterized the catalysts by N-2 adsorption/desorption, XRD, H-2-TPR, chemisorption and TEM techniques. Physisorption results suggested a high specific surface area and XRD spectra showed that nickel particles are in a highly dispersed state. A combination of XRD, TEM and chemisorption showed that Ni-0 particles with the average size lower, than 5.0 nm are always obtained even though the Ni loading ranged widely from 4 to 63 %. Compared with the Ni/Al2O3 catalysts, the Ni/La-Al2O3 ones with an appropriate amount of promoter enjoy a more open mesoporous structure and higher dispersion of Ni. Reduction kinetic studies of prepared catalysts were investigated by temperature-programmed reduction (TPR) method and the fact that La additive partially destroyed the metastable Ni-Al mixed oxide phase was detailed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
La0.8Sr0.2Mn1.1O3 (LSM1.1)-10 mol% Sc2O3-Stabilized ZrO2 co-doped with CeO2 (ScSZ) composite cathodes were investigated for anode-supported solid oxide fuel cells (SOFCs) with thin 8 mol% Y2O3-stabilized ZrO2 (YSZ) electrolyte. X-ray diffraction (XRD) results indicated that the ScSZ electrolytes displayed good chemical compatibility with the nonstoichiometric LSM1.1 against co-firing at 1300 degrees C. Increasing the CeO2 content in the ScSZ electrolytes dramatically suppressed the electrode polarization resistance, which may be related to the improved surface oxygen exchange or the enlarged active area of cathode. The 5Ce10ScZr was the best electrolyte for the composite cathodes, which caused a small ohmic resistance decrease and the reduced polarization resistance and brought about the highest cell performance. The cell performances at lower temperatures seemed to rely on the electrode polarization resistance more seriously, than the ohmic resistance. Compared with the cell impedance at higher temperatures, the higher the 5Ce10ScZr proportion in the composite cathodes, the smaller the increment of the charge transfer resistance at lower temperatures. The anode-supported SOFC with the LSM1.1-5Ce10ScZr (60:40) composite cathode achieved the maximum power densities of 0.82 W/cm(2) at 650 degrees C and 2.24 W/cm(2) at 800 degrees C, respectively. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Herein is presented a novel chemical vapour deposition (CVD) route for the fabrication of oxide ferroelectrics. A versatile layer-by-layer growth mode was developed to prepare naturally super-latticed bismuth based materials belonging to the Aurivillius phase family, with which good control over composition and crystal structure was achieved. In chapter 3, the effect of epitaxial strain on one of the very simple oxide materials TiO2 was studied. It has been found that the ultra-thin TiO2 films demonstrate ferroelectric behaviour when grown on NdGaO3 substrates. TiO2 exists in various crystal phases, but none of them show ferroelectric behaviour. The epitaxial strain due to the substrate, changes the crystal structure from tetragonal to orthorhombic which in turn leads to ferroelectric behaviour. In chapter 4, a unique growth method for multiferroic BiFeO3 (BFO) thin films is shown, where a phase pure BFO thin films can be prepared even in the presence of excess bismuth precursor during the growth process. This type of growth is usually called adsorption controlled growth and can be used for growing various bismuth containing compounds, where the volatility of bismuth can create various types of defects. Chapter 5 describes the growth of Bi4Ti3O12 thin films in a layer-by-layer growth mode. In this section, the effect of Bi and Ti precursor flows on the growth of thin films is discussed and it is shown that how change in precursor flows leads to out-ofphase boundary defects during the layer-by-layer growth mode. In chapter 6, the growth of a compound Bi5Ti3FeO15, which is a 1:1 mixture of BiFeO3 and Bi4Ti3O12, is presented. The growth mechanism of Bi5Ti3FeO15 thin films is presented, where the Fe precursor flow was controlled from zero to the insertion of one full BiFeO3 perovskite unit cell into the Bi4Ti3O12 structure in addition, the effect of iron precursor flow on crystalline properties is demonstrated. The methods presented in this thesis can be adopted to grow ferroelectric and multiferroic films for industrial applications.
Resumo:
The work presented in this thesis described the development of low-cost sensing and separation devices with electrochemical detections for health applications. This research employs macro, micro and nano technology. The first sensing device developed was a tonerbased micro-device. The initial development of microfluidic devices was based on glass or quartz devices that are often expensive to fabricate; however, the introduction of new types of materials, such as plastics, offered a new way for fast prototyping and the development of disposable devices. One such microfluidic device is based on the lamination of laser-printed polyester films using a computer, printer and laminator. The resulting toner-based microchips demonstrated a potential viability for chemical assays, coupled with several detection methods, particularly Chip-Electrophoresis-Chemiluminescence (CE-CL) detection which has never been reported in the literature. Following on from the toner-based microchip, a three-electrode micro-configuration was developed on acetate substrate. This is the first time that a micro-electrode configuration made from gold; silver and platinum have been fabricated onto acetate by means of patterning and deposition techniques using the central fabrication facilities in Tyndall National Institute. These electrodes have been designed to facilitate the integration of a 3- electrode configuration as part of the fabrication process. Since the electrodes are on acetate the dicing step can automatically be eliminated. The stability of these sensors has been investigated using electrochemical techniques with excellent outcomes. Following on from the generalised testing of the electrodes these sensors were then coupled with capillary electrophoresis. The final sensing devices were on a macro scale and involved the modifications of screenprinted electrodes. Screen-printed electrodes (SPE) are generally seen to be far less sensitive than the more expensive electrodes including the gold, boron-doped diamond and glassy carbon electrodes. To enhance the sensitivity of these electrodes they were treated with metal nano-particles, gold and palladium. Following on from this, another modification was introduced. The carbonaceous material carbon monolith was drop-cast onto the SPE and then the metal nano-particles were electrodeposited onto the monolith material
Resumo:
A comparison of dc characteristics of fully depleted double-gate (DG) MOSFETs with respect to low-power circuit applications and device scaling has been performed by two-dimensional device simulation. Three different DG MOSFET structures including a conventional N+ polysilicon gate device with highly doped Si layer, an asymmetrical P+/N+ polysilicon gate device with low doped Si layer and a midgap metal gate device with low doped Si layer have been analysed. It was found that DG MOSFET with mid-gap metal, gates yields the best dc parameters for given off-state drain leakage current and highest immunity to the variation of technology parameters (gate length, gate oxide thickness and Si layer thickness). It is also found that an asymmetrical P+/N+ polysilicon gate DG MOSFET design offers comparable dc characteristics, but better parameter immunity to technology tolerances than a conventional DG MOSFET. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Organic light emitting diode devices employing organometallic Nd(9-hydroxyphenalen-1-one)(3) complexes as near infrared emissive dopants dispersed within poly(N-vinylcarbazole) (PVK) host matrices have been fabricated by spin-casting layers of the doped polymer onto glass/indium tin oxide (ITO)/3,4-polyethylene-dioxythiophene-polystyrene sulfonate (PEDOT) substrates. Room temperature electroluminescence, centered at similar to 1065 nm. was observed from devices top contacted by evaporated aluminum or calcium metal cathodes and was assigned to transitions between the F-4(3/2) -> I-4(11/2) levels of the Nd3+ ions. In particular, a near infrared irradiance of 8.5 nW/mm(2) and an external quantum efficiency of 0.007% was achieved using glass/ITO/PEDOT/PVK:Nd(9-hydroxyphenalen-1-one)(3)/Ca/Al devices. (c) 2005 Elsevier B.V. All rights reserved.
Narrow bandwidth red electroluminescence from solution-processed lanthanide-doped polymer thin films
Resumo:
Narrow bandwidth red electroluminescence from OLED devices fabricated using a simple solution-based approach is demonstrated. A spin-casting method is employed to fabricate organic light emitting diode (OLED) devices comprising a poly(N-vinylcarbazole) (PVK) host matrix doped with a europium beta-diketonate complex, Eu(dbM)(3)(Phen) (dibenzoylmethanate, dbm; 1,10-phenanthroline, Phen) on glass/ indium tin oxide (ITO)/3,4-polyethylene-dioxythiophene-polystyrene sulfonate (PEDOT) substrates. Saturated red europium ion emission, based on the (5)Do ->F-7(2) transition, is centered at a wavelength of 612 nm with a full width at half maximum of 3.5 rim. A maximum external quantum efficiency of 6.3 x 10(-2) cd/A (3.1 X 10(-2)%) and a maximum luminance of 130 cd/M-2 at 400 mA/cm(2) and 25 V is measured for ITO/PEDOT/PVK:Eu(dbM)3(Phen)/Ca/Al devices. This measured output luminance is comparable to that of devices fabricated using more sophisticated small molecule evaporation techniques. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
Perovskite phase instability of BiMnO3 has been exploited to synthesize epitaxial metal oxide magnetic nanocrystals. Thin film processing conditions are tuned to promote the breakdown of the perovskite precursor into Bi2O3 matrix and magnetic manganese oxide islands. Subsequent cooling in vacuum ensures complete volatization of the Bi2O3, thus leaving behind an array of self-assembled magnetic Mn3O4 nanostructures. Both shape and size can be systematically controlled by the ambient oxygen environments and deposition time.As such, this approach can be extended to any other Bi-based complex ternary oxide system as it primarily hinges on the breakdown of parent Bi-based precursor and subsequent Bi2O3 volatization.
Resumo:
Undoped and cobalt-doped (1-4 wt.%) ZnO polycrystalline, thin films have been fabricated on quartz substrates using sequential spin-casting and annealing of simple salt solutions. X-ray diffraction (XRD) reveals a wurzite ZnO crystalline structure with high-resolution transmission electron microscopy showing lattice planes of separation 0.26 nm, characteristic of (002) planes. The Co appears to be tetrahedrally co-ordinated in the lattice on the Zn sites (XRD) and has a charge of + 2 in a high-spin electronic state (X-ray photoelectron spectroscopy). Co-doping does not alter the wurzite structure and there is no evidence of the precipitation of cobalt oxide phases within the limits of detection of Raman and XRD analysis. Lattice defects and chemisorbed oxygen are probed using photoluminescence and Raman spectroscopy - crucially, however, this transparent semiconductor material retains a bandgap in the ultraviolet (3.30-3.48 eV) and high transparency (throughout the visible spectral regime) across the doping range. © 2012 Elsevier B.V.