914 resultados para Multimedia Learning Simulation
Resumo:
The authors review and evaluate the use of a business simulation, specifically he Hotel Operational Training Simulation (HOTS), in the fourth year of a hospitality undergraduate program. Four dimensions were explored: learning experience, alternative method of instruction, critical and analytical thinking ability and delivery time frame, in addition to the student overall satisfaction with the learning experience.
Resumo:
The purpose of this study was to investigate the effect of multimedia instruction on achievement of college students in AMH 2010 from exploration and discovery to1865. A non-equivalent control group design was used. The dependent variable was achievement. The independent variables were learning styles method of instruction, and visual clarifiers (notes). The study was conducted using two history sections from Palm Beach Community College, in Boca Raton, Florida, between August and December, 1998. Data were obtained by means of placement scores, posttests, the Productivity Environmental Preference Survey (PEPS), and a researcher-developed student survey. Statistical analysis of the data was done using SPSS statistical software. Demographic variables were compared using Chi square. T tests were run on the posttests to determine the equality of variances. The posttest scores of the groups were compared using the analysis of covariance (ANCOVA) at the .05 level of significance. The first hypothesis there is a significant difference in students' learning of U.S. History when students receive multimedia instruction was supported, F = (1, 52)= 688, p < .0005, and F = (1, 53) = 8.52, p < .005for Tests 2 and 3, respectively. The second hypothesis there is a significant difference on the effectiveness of multimedia instruction based on students' various learning preferences was not supported. The last hypotheses there is a significant difference on students' learning of U.S. History when students whose first language is other than English and students who need remediation receive visual clarifiers were not supported. Analysis of covariance (ANCOVA) indicated no difference between the groups on Test 1, Test 2, or Test 3: F (1, 4 5)= .01, p < .940, F (l, 52) = .77, p < .385, and F (1,53) =.17, p > .678, respectively, for language. Analysis of covariance (ANCOVA) indicated no significant difference on Test 1, Test 2, or Test 3, between the groups on the variable remediation: F (1, 45) = .31, p < .580, F (1, 52) = 1.44, p < .236, and F (1, 53) = .21, p < .645, respectively.
Resumo:
The development of critical thinking and communication skills is an essential part of Baccalaureate and Practical Nursing education. Scenario-based simulation, a form of experiential learning, directly engages students in the learning process. This teaching learning method has been shown to increase students’ understanding of the influence of their personal beliefs and values when working with clients and to improve therapeutic communication and critical thinking skills. Students in both the BN (Collaborative) and PN Programs at the Centre for Nursing Studies demonstrate a strong theoretical understanding of the impact of income and social status on population health but often experience difficulty applying this knowledge to the clinical situations involving clients and families. The purpose of the project was to develop a scenario-based simulation activity to provide nursing students with first-hand experiences of the impact of income and social status on health service accessibility. A literature review and stakeholder consultations were conducted to inform the project. The findings of these initiatives and Kolb’s Experiential Learning Theory were used to guide all aspects of the project. This report is an account of how the income and social status simulation and its accompanying materials were developed. This project provided an excellent learning opportunity that demonstrated the use of advanced nursing competencies.
Resumo:
Relatório de estágio apresentado para obtenção do grau de mestre em Educação e Comunicação Multimédia
Resumo:
This paper investigates the use of web-based textbook supplementary teaching and learning materials which include multiple choice test banks, animated demonstrations, simulations, quizzes and electronic versions of the text. To gauge their experience of the web-based material students were asked to score the main elements of the material in terms of usefulness. In general it was found that while the electronic text provides a flexible platform for presentation of material there is a need for continued monitoring of student use of this material as the literature suggests that digital viewing habits may mean there is little time spent in evaluating information, either for relevance, accuracy or authority. From a lecturer perspective these materials may provide an effective and efficient way of presenting teaching and learning materials to the students in a variety of multimedia formats, but at this stage do not overcome the need for a VLE such as Blackboard™.
Resumo:
Bioscience subjects require a significant amount of training in laboratory techniques to produce highly skilled science graduates. Many techniques which are currently used in diagnostic, research and industrial laboratories require expensive equipment for single users; examples of which include next generation sequencing, quantitative PCR, mass spectrometry and other analytical techniques. The cost of the machines, reagents and limited access frequently preclude undergraduate students from using such cutting edge techniques. In addition to cost and availability, the time taken for analytical runs on equipment such as High Performance Liquid Chromatography (HPLC) does not necessarily fit with the limitations of timetabling. Understanding the theory underlying these techniques without the accompanying practical classes can be unexciting for students. One alternative from wet laboratory provision is to use virtual simulations of such practical which enable students to see the machines and interact with them to generate data. The Faculty of Science and Technology at the University of Westminster has provided all second and third year undergraduate students with iPads so that these students all have access to a mobile device to assist with learning. We have purchased licences from Labster to access a range of virtual laboratory simulations. These virtual laboratories are fully equipped and require student responses to multiple answer questions in order to progress through the experiment. In a pilot study to look at the feasibility of the Labster virtual laboratory simulations with the iPad devices; second year Biological Science students (n=36) worked through the Labster HPLC simulation on iPads. The virtual HPLC simulation enabled students to optimise the conditions for the separation of drugs. Answers to Multiple choice questions were necessary to progress through the simulation, these focussed on the underlying principles of the HPLC technique. Following the virtual laboratory simulation students went to a real HPLC in the analytical suite in order to separate of asprin, caffeine and paracetamol. In a survey 100% of students (n=36) in this cohort agreed that the Labster virtual simulation had helped them to understand HPLC. In free text responses one student commented that "The terminology is very clear and I enjoyed using Labster very much”. One member of staff commented that “there was a very good knowledge interaction with the virtual practical”.
Resumo:
The emerging technologies have expanded a new dimension of self – ‘technoself’ driven by socio-technical innovations and taken an important step forward in pervasive learning. Technology Enhanced Learning (TEL) research has increasingly focused on emergent technologies such as Augmented Reality (AR) for augmented learning, mobile learning, and game-based learning in order to improve self-motivation and self-engagement of the learners in enriched multimodal learning environments. These researches take advantage of technological innovations in hardware and software across different platforms and devices including tablets, phoneblets and even game consoles and their increasing popularity for pervasive learning with the significant development of personalization processes which place the student at the center of the learning process. In particular, augmented reality (AR) research has matured to a level to facilitate augmented learning, which is defined as an on-demand learning technique where the learning environment adapts to the needs and inputs from learners. In this paper we firstly study the role of Technology Acceptance Model (TAM) which is one of the most influential theories applied in TEL on how learners come to accept and use a new technology. Then we present the design methodology of the technoself approach for pervasive learning and introduce technoself enhanced learning as a novel pedagogical model to improve student engagement by shaping personal learning focus and setting. Furthermore we describe the design and development of an AR-based interactive digital interpretation system for augmented learning and discuss key features. By incorporating mobiles, game simulation, voice recognition, and multimodal interaction through Augmented Reality, the learning contents can be geared toward learner's needs and learners can stimulate discovery and gain greater understanding. The system demonstrates that Augmented Reality can provide rich contextual learning environment and contents tailored for individuals. Augment learning via AR can bridge this gap between the theoretical learning and practical learning, and focus on how the real and virtual can be combined together to fulfill different learning objectives, requirements, and even environments. Finally, we validate and evaluate the AR-based technoself enhanced learning approach to enhancing the student motivation and engagement in the learning process through experimental learning practices. It shows that Augmented Reality is well aligned with constructive learning strategies, as learners can control their own learning and manipulate objects that are not real in augmented environment to derive and acquire understanding and knowledge in a broad diversity of learning practices including constructive activities and analytical activities.
Resumo:
The purpose of this paper is to examine the promising contributions of the Concept Maps for Learning (CMfL) website to assessment for learning practices. The CMfL website generates concept maps from relatedness degree of concepts pairs through the Pathfinder Scaling Algorithm. This website also confirms the established principles of effective assessment for learning, for it is capable of automatically assessing students' higher order knowledge, simultaneously identifying strengths and weaknesses, immediately providing useful feedback and being user-friendly. According to the default assessment plan, students first create concept maps on a particular subject and then they are given individualized visual feedback followed by associated instructional material (e.g., videos, website links, examples, problems, etc.) based on a comparison of their concept map and a subject matter expert's map. After studying the feedback and instructional material, teachers can monitor their students' progress by having them create revised concept maps. Therefore, we claim that the CMfL website may reduce the workload of teachers as well as provide immediate and delayed feedback on the weaknesses of students in different forms such as graphical and multimedia. For the following study, we will examine whether these promising contributions to assessment for learning are valid in a variety of subjects.
Resumo:
Background
Medical students transitioning into professional practice feel underprepared to deal with the emotional complexities of real-life ethical situations. Simulation-based learning (SBL) may provide a safe environment for students to probe the boundaries of ethical encounters. Published studies of ethics simulation have not generated sufficiently deep accounts of student experience to inform pedagogy. The aim of this study was to understand students’ lived experiences as they engaged with the emotional challenges of managing clinical ethical dilemmas within a SBL environment.
Methods
This qualitative study was underpinned by an interpretivist epistemology. Eight senior medical students participated in an interprofessional ward-based SBL activity incorporating a series of ethically challenging encounters. Each student wore digital video glasses to capture point-of-view (PoV) film footage. Students were interviewed immediately after the simulation and the PoV footage played back to them. Interviews were transcribed verbatim. An interpretative phenomenological approach, using an established template analysis approach, was used to iteratively analyse the data.
Results
Four main themes emerged from the analysis: (1) ‘Authentic on all levels?’, (2)‘Letting the emotions flow’, (3) ‘Ethical alarm bells’ and (4) ‘Voices of children and ghosts’. Students recognised many explicit ethical dilemmas during the SBL activity but had difficulty navigating more subtle ethical and professional boundaries. In emotionally complex situations, instances of moral compromise were observed (such as telling an untruth). Some participants felt unable to raise concerns or challenge unethical behaviour within the scenarios due to prior negative undergraduate experiences.
Conclusions
This study provided deep insights into medical students’ immersive and embodied experiences of ethical reasoning during an authentic SBL activity. By layering on the human dimensions of ethical decision-making, students can understand their personal responses to emotion, complexity and interprofessional working. This could assist them in framing and observing appropriate ethical and professional boundaries and help smooth the transition into clinical practice.
Resumo:
Educational systems worldwide are facing an enormous shift as a result of sociocultural, political, economic, and technological changes. The technologies and practices that have developed over the last decade have been heralded as opportunities to transform both online and traditional education systems. While proponents of these new ideas often postulate that they have the potential to address the educational problems facing both students and institutions and that they could provide an opportunity to rethink the ways that education is organized and enacted, there is little evidence of emerging technologies and practices in use in online education. Because researchers and practitioners interested in these possibilities often reside in various disciplines and academic departments the sharing and dissemination of their work across often rigid boundaries is a formidable task. Contributors to Emergence and Innovation in Digital Learning include individuals who are shaping the future of online learning with their innovative applications and investigations on the impact of issues such as openness, analytics, MOOCs, and social media. Building on work first published in Emerging Technologies in Distance Education, the contributors to this collection harness the dispersed knowledge in online education to provide a one-stop locale for work on emergent approaches in the field. Their conclusions will influence the adoption and success of these approaches to education and will enable researchers and practitioners to conceptualize, critique, and enhance their understanding of the foundations and applications of new technologies.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Chapter 6 concerns ‘Designing and developing digital and blended learning solutions’, however, despite its title, it is not aimed at developing L&D professionals to be technologists (in so much as how Chapter 3 is not aimed at developing L&D professionals to be accounting and financial experts). Chapter 6 is about developing L&D professionals to be technology savvy. In doing so, I adopt a culinary analogy in presenting this chapter, where the most important factors in creating a dish (e.g. blended learning), are the ingredients and the flavour each of it brings. The chapter first explores the typical technologies and technology products that are available for learning and development i.e. the ingredients. I then introduce the data Format, Interactivity/ Immersion, Timing, Content (creation and curation), Connectivity and Administration (FITCCA) framework, that helps L&D professionals to look beyond the labels of technologies in identifying what the technology offers, its functions and features, which is analogous to the ‘flavours’ of the ingredients. The next section discusses some multimedia principles that are important for L&D professionals to consider in designing and developing digital learning solutions. Finally, whilst there are innumerable permutations of blended learning, this section focuses on the typical emphasis in blended learning and how technology may support such blends.
Resumo:
The debriefing phase in human patient simulation is considered to be crucial for learning. To ensure good learning conditions, the use of small groups is recommended, which poses a major challenge when the student count is high. The use of large groups may provide an alternative for typical lecture-style education and contribute to a more frequently and repeated training which is considered to be important for achieving simulation competency. The purpose of the present study was to describe nursing students’ experiences obtained during the debriefing conducted in small and large groups with the use of a qualitative descriptive approach. The informants had participated in a human patient simulation situation either in large or small groups. Data was collected through the use of five focus-group interviews and analysed by content analysis. The findings showed that independent of group-size the informants experienced the learning strategies to be unfamiliar and intrusive, and in the large groups to such an extent that learning was hampered. Debriefing was perceived as offering excellent opportunities for transferable learning, and activity, predictability and preparedness were deemed essential. Small groups provided the best learning conditions in that safety and security were ensured, but were perceived as providing limited challenges to accommodate professional requirements as a nurse. Simulation competency as a prerequisite for learning was shown not to be developed isolated in conjunction with simulation, but depends on a systematic effort to build a learning community in the programme in general. The faculty needs to support the students to be conscious and accustomed to learning as a heightened experience of learning out of their comfort zone.
Resumo:
Abstract: Active or participatory learning by the student within a classroom environment has been fairly recently recognized as an effective, efficient, and superior instructional technique yet few teachers in higher education have adopted this pedagogical strategy. This is especially true in Science where teachers primarily lecture to passively seated students while using static visual aids or multimedia projections. Teachers generally teach as they were taught and lecture formats have been the norm. Although student-learning theories as well as student learning styles, abilities, and understanding strategies have changed, traditional teaching techniques have not evolved past the “chalk and talk” instructional strategy. This research looked into student’s perceptions of cooperative learning or team-based active learning in order to gain insight and some understanding as to how students felt about this learning technique. Student’s attitudes were then compared to student grades to detennine whether cooperative learning impeded or ameliorated academic performance. The results revealed significant differences measured in all the survey questions pertaining to perception or attitudes. As a result of the cooperative learning activities, respondents indicated more agreement to the survey questions pertaining to the benefits of cooperative learning. The experimental group exposed to cooperative learning thus experienced more positive attitudes and perceptions than the groups exposed only to a lecture-based teaching and learning format. Each of the hypotheses tested demonstrated that students had more positive attitudes towards cooperative learning strategies. Recommendations as to future work were presented in order to gain a greater understanding into both student and teacher attitudes towards the cooperative learning model.||Résumé: Lapprentissage actif ou préparatoire par létudiant au sein d’une classe a été reconnu assez récemment comme une technique d’enseignement plus efficace. Cependant, peu d’enseignants ont adopté cette stratégie pedagogique pour l'éducation post-secondaire. Ceci est particulièrement le cas dans le domaine des sciences où les enseignants font surtout usage de cours magistraux avec des étudiants passifs tout en utilisant des aides visuelles statiques ou des projections multimédias. Les professeurs enseignent generalement comme on leur a eux-même enseigné et les cours magistraux ont été la norme par le passé. Les techniques traditionnelles d'enseignernent n'ont pas évolué au-delà de la craie et du tableau noir et ce même si les théories sur l’apprentissage par les étudiants ont changé, tout comme les styles, les habiletés et les stratégies de compréhension d’apprentissage des étudiants. Cette recherche se penche sur les perceptions des étudiants au sujet de l'apprentissage coopératif ou de l'apprentissage actif par équipe de telle sorte qu'on puisse avoir un aperçu et une certaine compréhension de comment les étudiants se sentent par rapport à ces techniques d'apprentissage. Les attitudes des étudiants ont par la suite été comparées aux notes de ceux-ci pour déterminer si l'apprentissage coopératif avait nui ou au contraire amélioré leurs performances académiques. Les résultats obtenus dans l'étude d'ensemble révèlent des différences significatives dans toutes les questions ayant trait à la perception et aux attitudes.
Resumo:
This thesis addresses the Batch Reinforcement Learning methods in Robotics. This sub-class of Reinforcement Learning has shown promising results and has been the focus of recent research. Three contributions are proposed that aim to extend the state-of-art methods allowing for a faster and more stable learning process, such as required for learning in Robotics. The Q-learning update-rule is widely applied, since it allows to learn without the presence of a model of the environment. However, this update-rule is transition-based and does not take advantage of the underlying episodic structure of collected batch of interactions. The Q-Batch update-rule is proposed in this thesis, to process experiencies along the trajectories collected in the interaction phase. This allows a faster propagation of obtained rewards and penalties, resulting in faster and more robust learning. Non-parametric function approximations are explored, such as Gaussian Processes. This type of approximators allows to encode prior knowledge about the latent function, in the form of kernels, providing a higher level of exibility and accuracy. The application of Gaussian Processes in Batch Reinforcement Learning presented a higher performance in learning tasks than other function approximations used in the literature. Lastly, in order to extract more information from the experiences collected by the agent, model-learning techniques are incorporated to learn the system dynamics. In this way, it is possible to augment the set of collected experiences with experiences generated through planning using the learned models. Experiments were carried out mainly in simulation, with some tests carried out in a physical robotic platform. The obtained results show that the proposed approaches are able to outperform the classical Fitted Q Iteration.