875 resultados para Machine Learning Robotics Artificial Intelligence Bayesian Networks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il morbo di Alzheimer è ancora una malattia incurabile. Negli ultimi anni l'aumento progressivo dell'aspettativa di vita ha contribuito a un'insorgenza maggiore di questa patologia, specialmente negli stati con l'età media più alta, tra cui l'Italia. La prevenzione risulta una delle poche vie con cui è possibile arginarne lo sviluppo, ed in questo testo vengono analizzate le potenzialità di alcune tecniche di Machine Learning atte alla creazione di modelli di supporto diagnostico per Alzheimer. Dopo un'opportuna introduzione al morbo di Alzheimer ed al funzionamento generale del Machine Learning, vengono presentate e approfondite due delle tecniche più promettenti per la diagnosi di patologie neurologiche, ovvero la Support Vector Machine (macchina a supporto vettoriale, SVM) e la Convolutional Neural Network (rete neurale convoluzionale, CNN), con annessi risultati, punti di forza e principali debolezze. La conclusione verterà sul possibile futuro delle intelligenze artificiali, con particolare attenzione all'ambito sanitario, e verranno discusse le principali difficoltà nelle quali queste incombono prima di essere commercializzate, insieme a plausibili soluzioni.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’obiettivo di questa tesi `e l’estensione della conoscenza di un argomento già ampliamente conosciuto e ricercato. Questo lavoro focalizza la propria attenzione su una nicchia dell’ampio mondo della virtualizzazione, del machine learning e delle tecniche di apprendimento parallelo. Nella prima parte verranno spiegati alcuni concetti teorici chiave per la virtualizzazione, ponendo una maggior attenzione verso argomenti di maggior importanza per questo lavoro. La seconda parte si propone di illustrare, in modo teorico, le tecniche usate nelle fasi di training di reti neurali. La terza parte, attraverso una parte progettuale, analizza le diverse tecniche individuate applicandole ad un ambiente containerizzato.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il tema della biodiversità sta assumendo sempre più importanza negli ultimi decenni a causa delle condizioni di rischio, dovute alle attività umane, a cui l'intero mondo naturale è costantemente sottoposto. In questo contesto diventa sempre più importante l'educazione ambientale per aumentare la consapevolezza delle persone e per far si che ognuno possa adottare i dovuti accorgimenti nel rispetto e nella preservazione della natura. Questo progetto nasce con l'obiettivo di approfondire il tema della sensibilizzazione, attraverso lo sviluppo di una applicazione nativa android in grado di classificare gli insetti impollinatori e che, grazie all'integrazione di elementi di gamification, sia in grado di motivare l'utente ad approfondire le proprie conoscenze. Il progetto di tesi è suddiviso in tre capitoli: il primo descrive i concetti di biodiversità, gamification e citizen science su cui si basa l'elaborato; il secondo capitolo rappresenta la fase di progettazione per strutturare il database, le interfacce grafiche e per capire le tecnologie migliore da utilizzare; infine il terzo capitolo mostra l'implementazione completa del progetto, descrivendone nel dettaglio le funzionalità.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il mio progetto di tesi ha come obiettivo quello di creare un modello in grado di predire il rating delle applicazioni presenti all’interno del Play Store, uno dei più grandi servizi di distribuzione digitale Android. A tale scopo ho utilizzato il linguaggio Python, che grazie alle sue librerie, alla sua semplicità e alla sua versatilità è certamen- te uno dei linguaggi più usati nel campo dell’intelligenza artificiale. Il punto di partenza del mio studio è stato il Dataset (Insieme di dati strutturati in forma relazionale) “Google Play Store Apps” reperibile su Kaggle al seguente indirizzo: https://www.kaggle.com/datasets/lava18/google-play-store-apps, contenente 10841 osservazioni e 13 attributi. Dopo una prima parte relativa al caricamen- to, alla visualizzazione e alla preparazione dei dati su cui lavorare, ho applica- to quattro di↵erenti tecniche di Machine Learning per la stima del rating delle applicazioni. In particolare, sono state utilizzate:https://www.kaggle.com/datasets/lava18/google-play-store-apps, contenente 10841 osservazioni e 13 attributi. Dopo una prima parte relativa al caricamento, alla visualizzazione e alla preparazione dei dati su cui lavorare, ho applicato quattro differenti tecniche di Machine Learning per la stima del rating delle applicazioni: Ridje, Regressione Lineare, Random Forest e SVR. Tali algoritmi sono stati applicati attuando due tipi diversi di trasformazioni (Label Encoding e One Hot Encoding) sulla variabile ‘Category’, con lo scopo di analizzare come le suddette trasformazioni riescano a influire sulla bontà del modello. Ho confrontato poi l’errore quadratico medio (MSE), l’errore medio as- soluto (MAE) e l’errore mediano assoluto (MdAE) con il fine di capire quale sia l’algoritmo più efficiente.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Descrizione, implementazione in Python e valutazione di modelli di Machine Learning e di tutte le sue fasi di Preprocessing, EDA, Training, Test e Evaluation, per valutare la qualità del vino attraverso le sue caratteristiche fisico-chimiche.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il monitoraggio basato su emissioni acustiche (AE) guidate si è confermato tra le tecniche più affidabili nel campo del Non-Destructive Testing delle strutture planari, vista anche la sua semplicità implementativa, i bassi costi che lo caratterizzano, la non invasività e la possibilità di realizzare un sistema che agisca in maniera continuativa ed in tempo reale sfruttando reti di sensori permanentemente installati, senza la necessità di ispezioni periodiche. In tale contesto, è possibile sfruttare l’abilità dell’apprendimento automatico nell’individuazione dei pattern nascosti all’interno dei segnali grezzi registrati, ottenendo così informazioni utili ai fini dell’applicazione considerata. L’esecuzione on-edge dei modelli, ovvero sul punto di acquisizione, consente di superare le limitazioni imposte dal processamento centralizzato dei dati, con notevoli vantaggi in termini di consumo energetico, tempestività nella risposta ed integrità degli stessi. A questo scopo, si rivela però necessario sviluppare modelli compatibili con le stringenti risorse hardware dei dispositivi a basso costo tipicamente impiegati. In questo elaborato verranno prese in esame alcune tipologie di reti neurali artificiali per l’estrazione dell’istante di arrivo (ToA) di un’emissione acustica all’interno di una sequenza temporale, in particolare quelle convoluzionali (CNNs) ed una loro variante più recente, le CapsNet basate su rounting by agreement. L’individuazione dei ToA relativi al medesimo evento su segnali acquisiti in diverse posizioni spaziali consente infatti di localizzare la sorgente da cui esso è scaturito. Le dimensioni di questi modelli permettono di eseguire l’inferenza direttamente su edge-device. I risultati ottenuti confermano la maggiore robustezza delle tecniche di apprendimento profondo rispetto ai metodi statistici tradizionali nel far fronte a diverse tipologie di disturbo, in particolare negli scenari più critici dal punto di vista del rapporto segnale-rumore.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nella sede dell’azienda ospitante Alexide, si è ravvisata la mancanza di un sistema di controllo automatico da remoto dell’intero impianto di climatizzazione HVAC (Heating, Ventilation and Air Conditioning) utilizzato, e la soluzione migliore è risultata quella di attuare un processo di trasformazione della struttura in uno smart building. Ho quindi eseguito questa procedura di trasformazione digitale progettando e sviluppando un sistema distribuito in grado di gestire una serie di dati provenienti in tempo reale da sensori ambientali. L’architettura del sistema progettato è stata sviluppata in C# su ambiente dotNET, dove sono stati collezionati i dati necessari per il funzionamento del modello di predizione. Nella fattispecie sono stati utilizzati i dati provenienti dall’HVAC, da un sensore di temperatura interna dell'edificio e dal fotovoltaico installato nella struttura. La comunicazione tra il sistema distribuito e l’entità dell’HVAC avviene mediante il canale di comunicazione ModBus, mentre per quanto riguarda i dati della temperatura interna e del fotovoltaico questi vengono collezionati da sensori che inviano le informazioni sfruttando un canale di comunicazione che utilizza il protocollo MQTT, e lo stesso viene utilizzato come principale metodo di comunicazione all’interno del sistema, appoggiandosi ad un broker di messaggistica con modello publish/subscribe. L'automatizzazione del sistema è dovuta anche all'utilizzo di un modello di predizione con lo scopo di predire in maniera quanto più accurata possibile la temperatura interna all'edificio delle ore future. Per quanto riguarda il modello di predizione da me implementato e integrato nel sistema la scelta è stata quella di ispirarmi ad un modello ideato da Google nel 2014 ovvero il Sequence to Sequence. Il modello sviluppato si struttura come un encoder-decoder che utilizza le RNN, in particolare le reti LSTM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of understanding how humans perceive the quality of a reproduced image is of interest to researchers of many fields related to vision science and engineering: optics and material physics, image processing (compression and transfer), printing and media technology, and psychology. A measure for visual quality cannot be defined without ambiguity because it is ultimately the subjective opinion of an “end-user” observing the product. The purpose of this thesis is to devise computational methods to estimate the overall visual quality of prints, i.e. a numerical value that combines all the relevant attributes of the perceived image quality. The problem is limited to consider the perceived quality of printed photographs from the viewpoint of a consumer, and moreover, the study focuses only on digital printing methods, such as inkjet and electrophotography. The main contributions of this thesis are two novel methods to estimate the overall visual quality of prints. In the first method, the quality is computed as a visible difference between the reproduced image and the original digital (reference) image, which is assumed to have an ideal quality. The second method utilises instrumental print quality measures, such as colour densities, measured from printed technical test fields, and connects the instrumental measures to the overall quality via subjective attributes, i.e. attributes that directly contribute to the perceived quality, using a Bayesian network. Both approaches were evaluated and verified with real data, and shown to predict well the subjective evaluation results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel approach for solving robust parameter estimation problems is presented for processes with unknown-but-bounded errors and uncertainties. An artificial neural network is developed to calculate a membership set for model parameters. Techniques of fuzzy logic control lead the network to its equilibrium points. Simulated examples are presented as an illustration of the proposed technique. The result represent a significant improvement over previously proposed methods. (C) 1999 IMACS/Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intrusion detection systems that make use of artificial intelligence techniques in order to improve effectiveness have been actively pursued in the last decade. Neural networks and Support Vector Machines have been also extensively applied to this task. However, their complexity to learn new attacks has become very expensive, making them inviable for a real time retraining. In this research, we introduce a new pattern classifier named Optimum-Path Forest (OPF) to this task, which has demonstrated to be similar to the state-of-the-art pattern recognition techniques, but extremely more efficient for training patterns. Experiments on public datasets showed that OPF classifier may be a suitable tool to detect intrusions on computer networks, as well as allow the algorithm to learn new attacks faster than the other techniques. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As Redes da Próxima Geração consistem no desenvolvimento de arquiteturas que viabilizem a continuidade de serviços que proporcionem sempre a melhor conectividade (Always Best Connectivity - ABC) aos usuários móveis com suporte adequado à Qualidade de Experiência (QoE) para aplicações multimídia de alta definição, nesse novo contexto as arquiteturas têm perspectiva orientada a serviços e não a protocolos. Esta tese apresenta uma arquitetura para redes da próxima geração capaz de fornecer acesso heterogêneo sem fio e handover vertical transparente para as aplicações multimídia. A tese considera diferentes tecnologias sem fio e também adota o padrão IEEE 802.21 (Media Independent Handover – MIH) para auxiliar na integração e gerenciamento das redes heterogêneas sem fio. As tecnologias que a arquitetura possui são: IEEE 802.11 (popularmente denominada de WiFi), IEEE 802.16 (popularmente denominada de WiMAX) e LTE (popularmente denominada de redes 4G). O objetivo é que arquitetura tenha a capacidade de escolher entre as alternativas disponíveis a melhor conexão para o momento. A arquitetura proposta apresenta mecanismos de predição de Qualidade de Experiência (Quality of Experience - QoE) que será o parâmetro decisivo para a realização ou não do handover para uma nova rede. A predição para determinar se haverá ou não mudança de conectividade será feita com o uso da inteligência computacional de Redes Neurais Artificiais. Além disso a arquitetura também apresenta um mecanismo de descarte seletivo de pacotes especifico para aplicações multimídia. A proposta é avaliada via simulação utilizando-se o ns-2 (Network Simulator) e os resultados de desempenho são apresentados através das métricas de QoS, de QoE e também visualmente através da exibição de frames dos vídeos transmitidos na arquitetura.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid growth of virtualized data centers and cloud hosting services is making the management of physical resources such as CPU, memory, and I/O bandwidth in data center servers increasingly important. Server management now involves dealing with multiple dissimilar applications with varying Service-Level-Agreements (SLAs) and multiple resource dimensions. The multiplicity and diversity of resources and applications are rendering administrative tasks more complex and challenging. This thesis aimed to develop a framework and techniques that would help substantially reduce data center management complexity.^ We specifically addressed two crucial data center operations. First, we precisely estimated capacity requirements of client virtual machines (VMs) while renting server space in cloud environment. Second, we proposed a systematic process to efficiently allocate physical resources to hosted VMs in a data center. To realize these dual objectives, accurately capturing the effects of resource allocations on application performance is vital. The benefits of accurate application performance modeling are multifold. Cloud users can size their VMs appropriately and pay only for the resources that they need; service providers can also offer a new charging model based on the VMs performance instead of their configured sizes. As a result, clients will pay exactly for the performance they are actually experiencing; on the other hand, administrators will be able to maximize their total revenue by utilizing application performance models and SLAs. ^ This thesis made the following contributions. First, we identified resource control parameters crucial for distributing physical resources and characterizing contention for virtualized applications in a shared hosting environment. Second, we explored several modeling techniques and confirmed the suitability of two machine learning tools, Artificial Neural Network and Support Vector Machine, to accurately model the performance of virtualized applications. Moreover, we suggested and evaluated modeling optimizations necessary to improve prediction accuracy when using these modeling tools. Third, we presented an approach to optimal VM sizing by employing the performance models we created. Finally, we proposed a revenue-driven resource allocation algorithm which maximizes the SLA-generated revenue for a data center.^