911 resultados para Machine Learning,Natural Language Processing,Descriptive Text Mining,POIROT,Transformer
Resumo:
In CMS è stato lanciato un progetto di Data Analytics e, all’interno di esso, un’attività specifica pilota che mira a sfruttare tecniche di Machine Learning per predire la popolarità dei dataset di CMS. Si tratta di un’osservabile molto delicata, la cui eventuale predizione premetterebbe a CMS di costruire modelli di data placement più intelligenti, ampie ottimizzazioni nell’uso dello storage a tutti i livelli Tiers, e formerebbe la base per l’introduzione di un solito sistema di data management dinamico e adattivo. Questa tesi descrive il lavoro fatto sfruttando un nuovo prototipo pilota chiamato DCAFPilot, interamente scritto in python, per affrontare questa sfida.
Resumo:
In questa tesi sono stati introdotti e studiati i Big Data, dando particolare importanza al mondo NoSQL, approfondendo MongoDB, e al mondo del Machine Learning, approfondendo PredictionIO. Successivamente è stata sviluppata un'applicazione attraverso l'utilizzo di tecnologie web, nodejs, node-webkit e le tecnologie approfondite prima. L'applicazione utilizza l'interpolazione polinomiale per predirre il prezzo di un bene salvato nello storico presente su MongoDB. Attraverso PredictionIO, essa analizza il comportamento degli altri utenti consigliando dei prodotti per l'acquisto. Infine è stata effetuata un'analisi dei risultati dell'errore prodotto dall'interpolazione.
Resumo:
Abstract Radiation metabolomics employing mass spectral technologies represents a plausible means of high-throughput minimally invasive radiation biodosimetry. A simplified metabolomics protocol is described that employs ubiquitous gas chromatography-mass spectrometry and open source software including random forests machine learning algorithm to uncover latent biomarkers of 3 Gy gamma radiation in rats. Urine was collected from six male Wistar rats and six sham-irradiated controls for 7 days, 4 prior to irradiation and 3 after irradiation. Water and food consumption, urine volume, body weight, and sodium, potassium, calcium, chloride, phosphate and urea excretion showed major effects from exposure to gamma radiation. The metabolomics protocol uncovered several urinary metabolites that were significantly up-regulated (glyoxylate, threonate, thymine, uracil, p-cresol) and down-regulated (citrate, 2-oxoglutarate, adipate, pimelate, suberate, azelaate) as a result of radiation exposure. Thymine and uracil were shown to derive largely from thymidine and 2'-deoxyuridine, which are known radiation biomarkers in the mouse. The radiation metabolomic phenotype in rats appeared to derive from oxidative stress and effects on kidney function. Gas chromatography-mass spectrometry is a promising platform on which to develop the field of radiation metabolomics further and to assist in the design of instrumentation for use in detecting biological consequences of environmental radiation release.
Resumo:
This paper addresses an investigation with machine learning (ML) classification techniques to assist in the problem of flash flood now casting. We have been attempting to build a Wireless Sensor Network (WSN) to collect measurements from a river located in an urban area. The machine learning classification methods were investigated with the aim of allowing flash flood now casting, which in turn allows the WSN to give alerts to the local population. We have evaluated several types of ML taking account of the different now casting stages (i.e. Number of future time steps to forecast). We have also evaluated different data representation to be used as input of the ML techniques. The results show that different data representation can lead to results significantly better for different stages of now casting.
Resumo:
Finite element (FE) analysis is an important computational tool in biomechanics. However, its adoption into clinical practice has been hampered by its computational complexity and required high technical competences for clinicians. In this paper we propose a supervised learning approach to predict the outcome of the FE analysis. We demonstrate our approach on clinical CT and X-ray femur images for FE predictions ( FEP), with features extracted, respectively, from a statistical shape model and from 2D-based morphometric and density information. Using leave-one-out experiments and sensitivity analysis, comprising a database of 89 clinical cases, our method is capable of predicting the distribution of stress values for a walking loading condition with an average correlation coefficient of 0.984 and 0.976, for CT and X-ray images, respectively. These findings suggest that supervised learning approaches have the potential to leverage the clinical integration of mechanical simulations for the treatment of musculoskeletal conditions.
Resumo:
This article discusses the detection of discourse markers (DM) in dialog transcriptions, by human annotators and by automated means. After a theoretical discussion of the definition of DMs and their relevance to natural language processing, we focus on the role of like as a DM. Results from experiments with human annotators show that detection of DMs is a difficult but reliable task, which requires prosodic information from soundtracks. Then, several types of features are defined for automatic disambiguation of like: collocations, part-of-speech tags and duration-based features. Decision-tree learning shows that for like, nearly 70% precision can be reached, with near 100% recall, mainly using collocation filters. Similar results hold for well, with about 91% precision at 100% recall.
Resumo:
In this paper, we describe NewsCATS (news categorization and trading system), a system implemented to predict stock price trends for the time immediately after the publication of press releases. NewsCATS consists mainly of three components. The first component retrieves relevant information from press releases through the application of text preprocessing techniques. The second component sorts the press releases into predefined categories. Finally, appropriate trading strategies are derived by the third component by means of the earlier categorization. The findings indicate that a categorization of press releases is able to provide additional information that can be used to forecast stock price trends, but that an adequate trading strategy is essential for the results of the categorization to be fully exploited.
Resumo:
Esta tesina indaga en el ámbito de las Tecnologías de la Información sobre los diferentes desarrollos realizados en la interpretación automática de la semántica de textos y su relación con los Sistemas de Recuperación de Información. Partiendo de una revisión bibliográfica selectiva se busca sistematizar la documentación estableciendo de manera evolutiva los principales antecedentes y técnicas, sintetizando los conceptos fundamentales y resaltando los aspectos que justifican la elección de unos u otros procedimientos en la resolución de los problemas.
Resumo:
Esta tesina indaga en el ámbito de las Tecnologías de la Información sobre los diferentes desarrollos realizados en la interpretación automática de la semántica de textos y su relación con los Sistemas de Recuperación de Información. Partiendo de una revisión bibliográfica selectiva se busca sistematizar la documentación estableciendo de manera evolutiva los principales antecedentes y técnicas, sintetizando los conceptos fundamentales y resaltando los aspectos que justifican la elección de unos u otros procedimientos en la resolución de los problemas.
Resumo:
Esta tesina indaga en el ámbito de las Tecnologías de la Información sobre los diferentes desarrollos realizados en la interpretación automática de la semántica de textos y su relación con los Sistemas de Recuperación de Información. Partiendo de una revisión bibliográfica selectiva se busca sistematizar la documentación estableciendo de manera evolutiva los principales antecedentes y técnicas, sintetizando los conceptos fundamentales y resaltando los aspectos que justifican la elección de unos u otros procedimientos en la resolución de los problemas.