911 resultados para Low voltage capacitors banks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optimal supply chain management (SCM) is considered by the companies a new frontier in order to gain efficiently competitive advantage. Through the SCM companies must define their competitive strategies by positioning inside the supply chain wich belongs both as suppliers and as consumers. The main objectives of SCM is integrate multiple suppliers to satisfy the market demand and make possible the synergies between the parts of the supply chain in order to better serve the consumer Meanwhile, selection, evaluation and development of suppliers play important roles in establishing an efficient supply chain. Thus, the SCM covers elements such as manufacturing, assembly, raw materials, and distribution to the final consumer. Due to the factors described, the focus of this paper is to present the Analytic Hierarchical Process (AHP) application as an appropriate and structured method for the supplier selection of a strategic line of low voltage transformers of a transformers industry and compare it with the selection process currently used by this industry, showing the advantages of applying a multiple criteria decision making method. In this study, the research methodology used was modeling and simulation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEB

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Across the industry, regardless of the activity which is intended, the electricity distribution must meet the current and ever growing needs of the market, aiming at reliability and process efficiency. The energy must not only be available to ensure continuity of operation, but also to avoid the costs incurred due to deficiencies and failures. The tendency to migrate to intelligent systems is undeniable and this thesis will be analyzed the advantages that made this kind technology essential, focused on the analysis of the motor control center and as sturdy equipment fit to the concept of intelligent panels. The case study compares in a real scenario the acquisition of a system of low-voltage electrical panels comparing the cost to purchase the same set of panels made with and without the concept of intelligence

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Across the industry, regardless of the activity which is intended, the electricity distribution must meet the current and ever growing needs of the market, aiming at reliability and process efficiency. The energy must not only be available to ensure continuity of operation, but also to avoid the costs incurred due to deficiencies and failures. The tendency to migrate to intelligent systems is undeniable and this thesis will be analyzed the advantages that made this kind technology essential, focused on the analysis of the motor control center and as sturdy equipment fit to the concept of intelligent panels. The case study compares in a real scenario the acquisition of a system of low-voltage electrical panels comparing the cost to purchase the same set of panels made with and without the concept of intelligence

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the combination of the Dynamic Threshold (DT) voltage technique with a non-planar structure is experimentally studied in triple-gate FinFETs. The drain current, transconductance, resistance, threshold voltage, subthreshold swing and Drain Induced Barrier Lowering (DIBL) will be analyzed in the DT mode and the standard biasing configuration. Moreover, for the first time, the important figures of merit for the analog performance such as transconductance-over-drain current, output conductance. Early voltage and intrinsic voltage gain will be studied experimentally and through three-dimensional (3-D) numerical simulations for different channel doping concentrations in triple-gate DTMOS FinFETs. The results indicate that the DTMOS FinFETs always yield superior characteristic; and larger transistor efficiency. In addition, DTMOS devices with a high channel doping concentration exhibit much better analog performance compared to the normal operation mode, which is desirable for high performance low-power/low-voltage applications. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new conversion structure for three-phase grid-connected photovoltaic (PV) generation plants is presented and discussed in this Thesis. The conversion scheme is based on two insulated PV arrays, each one feeding the dc bus of a standard 2-level three-phase voltage source inverter (VSI). Inverters are connected to the grid by a traditional three-phase transformer having open-end windings at inverters side and either star or delta connection at the grid side. The resulting conversion structure is able to perform as a multilevel VSI, equivalent to a 3-level inverter, doubling the power capability of a single VSI with given voltage and current ratings. Different modulation schemes able to generate proper multilevel voltage waveforms have been discussed and compared. They include known algorithms, some their developments, and new original approaches. The goal was to share the grid power with a given ratio between the two VSI within each cycle period of the PWM, being the PWM pattern suitable for the implementation in industrial DSPs. It has been shown that an extension of the modulation methods for standard two-level inverter can provide a elegant solution for dual two-level inverter. An original control method has been introduced to regulate the dc-link voltages of each VSI, according to the voltage reference given by a single MPPT controller. A particular MPPT algorithm has been successfully tested, based on the comparison of the operating points of the two PV arrays. The small deliberately introduced difference between two operating dc voltages leads towards the MPP in a fast and accurate manner. Either simulation or experimental tests, or even both, always accompanied theoretical developments. For the simulation, the Simulink tool of Matlab has been adopted, whereas the experiments have been carried out by a full-scale low-voltage prototype of the whole PV generation system. All the research work was done at the Lab of the Department of Electrical Engineering, University of Bologna.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research work carried out in focusing a novel multiphase-multilevel ac motor drive system much suitable for low-voltage high-current power applications. In specific, six-phase asymmetrical induction motor with open-end stator winding configuration, fed from four standard two-level three-phase voltage source inverters (VSIs). Proposed synchronous reference frame control algorithm shares the total dc source power among the 4 VSIs in each switching cycle with three degree of freedom. Precisely, first degree of freedom concerns with the current sharing between two three-phase stator windings. Based on modified multilevel space vector pulse width modulation shares the voltage between each single VSIs of two three-phase stator windings with second and third degree of freedom, having proper multilevel output waveforms. Complete model of whole ac motor drive based on three-phase space vector decomposition approach was developed in PLECS - numerical simulation software working in MATLAB environment. Proposed synchronous reference control algorithm was framed in MATLAB with modified multilevel space vector pulse width modulator. The effectiveness of the entire ac motor drives system was tested. Simulation results are given in detail to show symmetrical and asymmetrical, power sharing conditions. Furthermore, the three degree of freedom are exploited to investigate fault tolerant capabilities in post-fault conditions. Complete set of simulation results are provided when one, two and three VSIs are faulty. Hardware prototype model of quad-inverter was implemented with two passive three-phase open-winding loads using two TMS320F2812 DSP controllers. Developed McBSP (multi-channel buffered serial port) communication algorithm able to control the four VSIs for PWM communication and synchronization. Open-loop control scheme based on inverse three-phase decomposition approach was developed to control entire quad-inverter configuration and tested with balanced and unbalanced operating conditions with simplified PWM techniques. Both simulation and experimental results are always in good agreement with theoretical developments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project concentrates on the Low Voltage Ride Through (LVRT) capability of Doubly Fed Induction Generator (DFIG) wind turbine. The main attention in the project is, therefore, drawn to the control of the DFIG wind turbine and of its power converter and to the ability to protect itself without disconnection during grid faults. It provides also an overview on the interaction between variable speed DFIG wind turbines and the power system subjected to disturbances, such as short circuit faults. The dynamic model of DFIG wind turbine includes models for both mechanical components as well as for all electrical components, controllers and for the protection device of DFIG necessary during grid faults. The viewpoint of this project is to carry out different simulations to provide insight and understanding of the grid fault impact on both DFIG wind turbines and on the power system itself. The dynamic behavior of DFIG wind turbines during grid faults is simulated and assessed by using a transmission power system generic model developed and delivered by Transmission System Operator in the power system simulation toolbox Digsilent, Matlab/Simulink and PLECS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The safety systems of nuclear power plants rely on low-voltage power, instrumentation and control cables. Inside the containment area, cables operate in harsh environments, characterized by relatively high temperature and gamma-irradiation. As these cables are related to fundamental safety systems, they must be able to withstand unexpected accident conditions and, therefore, their condition assessment is of utmost importance as plants age and lifetime extensions are required. Nowadays, the integrity and functionality of these cables are monitored mainly through destructive test which requires specific laboratory. The investigation of electrical aging markers which can provide information about the state of the cable by non-destructive testing methods would improve significantly the present diagnostic techniques. This work has been made within the framework of the ADVANCE (Aging Diagnostic and Prognostics of Low-Voltage I\&C Cables) project, a FP7 European program. This Ph.D. thesis aims at studying the impact of aging on cable electrical parameters, in order to understand the evolution of the electrical properties associated with cable degradation. The identification of suitable aging markers requires the comparison of the electrical property variation with the physical/chemical degradation mechanisms of polymers for different insulating materials and compositions. The feasibility of non-destructive electrical condition monitoring techniques as potential substitutes for destructive methods will be finally discussed studying the correlation between electrical and mechanical properties. In this work, the electrical properties of cable insulators are monitored and characterized mainly by dielectric spectroscopy, polarization/depolarization current analysis and space charge distribution. Among these techniques, dielectric spectroscopy showed the most promising results; by means of dielectric spectroscopy it is possible to identify the frequency range where the properties are more sensitive to aging. In particular, the imaginary part of permittivity at high frequency, which is related to oxidation, has been identified as the most suitable aging marker based on electrical quantities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The energy harvesting research field has grown considerably in the last decade due to increasing interests in energy autonomous sensing systems, which require smart and efficient interfaces for extracting power from energy source and power management (PM) circuits. This thesis investigates the design trade-offs for minimizing the intrinsic power of PM circuits, in order to allow operation with very weak energy sources. For validation purposes, three different integrated power converter and PM circuits for energy harvesting applications are presented. They have been designed for nano-power operations and single-source converters can operate with input power lower than 1 μW. The first IC is a buck-boost converter for piezoelectric transducers (PZ) implementing Synchronous Electrical Charge Extraction (SECE), a non-linear energy extraction technique. Moreover, Residual Charge Inversion technique is exploited for extracting energy from PZ with weak and irregular excitations (i.e. lower voltage), and the implemented PM policy, named Two-Way Energy Storage, considerably reduces the start-up time of the converter, improving the overall conversion efficiency. The second proposed IC is a general-purpose buck-boost converter for low-voltage DC energy sources, up to 2.5 V. An ultra-low-power MPPT circuit has been designed in order to track variations of source power. Furthermore, a capacitive boost circuit has been included, allowing the converter start-up from a source voltage VDC0 = 223 mV. A nano-power programmable linear regulator is also included in order to provide a stable voltage to the load. The third IC implements an heterogeneous multisource buck-boost converter. It provides up to 9 independent input channels, of which 5 are specific for PZ (with SECE) and 4 for DC energy sources with MPPT. The inductor is shared among channels and an arbiter, designed with asynchronous logic to reduce the energy consumption, avoids simultaneous access to the buck-boost core, with a dynamic schedule based on source priority.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questo lavoro si vuole mostrare come sia possibile realizzare un circuito per energy harvesting totalmente autonomo, quindi senza l’ausilio di batterie, per sorgenti ultra-low voltage, in particolare per sorgenti termoelettriche sottoposte a piccoli gradienti di temperatura ed in grado di erogare tensioni di qualche decina di millivolt. Si esporrà come il circuito sia capace di avviarsi, autosostenersi ed alimentare un piccolo carico. Si è scelta una architettura basata su componenti discreti suddivisa in due macro blocchi: un circuito di startup implementato attraverso un’architettura a trasformatore piezoelettrico e un boost converter pilotato in catena aperta da un oscillatore ultra-low power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fully controlled liquid injection and flow in hydrophobic polydimethylsiloxane (PDMS) two-dimensional microchannel arrays based on on-chip integrated, low-voltage-driven micropumps are demonstrated. Our architecture exploits the surface-acoustic-wave (SAW) induced counterflow mechanism and the effect of nebulization anisotropies at crossing areas owing to lateral propagating SAWs. We show that by selectively exciting single or multiple SAWs, fluids can be drawn from their reservoirs and moved towards selected positions of a microchannel grid. Splitting of the main liquid flow is also demonstrated by exploiting multiple SAW beams. As a demonstrator, we show simultaneous filling of two orthogonal microchannels. The present results show that SAW micropumps are good candidates for truly integrated on-chip fluidic networks allowing liquid control in arbitrarily shaped two-dimensional microchannel arrays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: The aim of this phantom study was to evaluate the contrast-to-noise ratio (CNR) in pulmonary computed tomography (CT)-angiography for 300 and 400 mg iodine/mL contrast media using variable x-ray tube parameters and patient sizes. We also analyzed the possible strategies of dose reduction in patients with different sizes. MATERIALS AND METHODS: The segmental pulmonary arteries were simulated by plastic tubes filled with 1:30 diluted solutions of 300 and 400 mg iodine/mL contrast media in a chest phantom mimicking thick, intermediate, and thin patients. Volume scanning was done with a CT scanner at 80, 100, 120, and 140 kVp. Tube current-time products (mAs) varied between 50 and 120% of the optimal value given by the built-in automatic dose optimization protocol. Attenuation values and CNR for both contrast media were evaluated and compared with the volume CT dose index (CTDI(vol)). Figure of merit, calculated as CNR/CTDIvol, was used to quantify image quality improvement per exposure risk to the patient. RESULTS: Attenuation of iodinated contrast media increased both with decreasing tube voltage and patient size. A CTDIvol reduction by 44% was achieved in the thin phantom with the use of 80 instead of 140 kVp without deterioration of CNR. Figure of merit correlated with kVp in the thin phantom (r = -0.897 to -0.999; P < 0.05) but not in the intermediate and thick phantoms (P = 0.09-0.71), reflecting a decreasing benefit of tube voltage reduction on image quality as the thickness of the phantom increased. Compared with the 300 mg iodine/mL concentration, the same CNR for 400 mg iodine/mL contrast medium was achieved at a lower CTDIvol by 18 to 40%, depending on phantom size and applied tube voltage. CONCLUSIONS: Low kVp protocols for pulmonary embolism are potentially advantageous especially in thin and, to a lesser extent, in intermediate patients. Thin patients profit from low voltage protocols preserving a good CNR at a lower exposure. The use of 80 kVp in obese patients may be problematic because of the limitation of the tube current available, reduced CNR, and high skin dose. The high CNR of the 400 mg iodine/mL contrast medium together with lower tube energy and/or current can be used for exposure reduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the use of magnesium as a Hall thruster propellant was evaluated. A xenon Hall thruster was modified such that magnesium propellant could be loaded into the anode and use waste heat from the thruster discharge to drive the propellant vaporization. A control scheme was developed, which allowed for precise control of the mass flow rate while still using plasma heating as the main mechanism for evaporation. The thruster anode, which also served as the propellant reservoir, was designed such that the open area was too low for sufficient vapor flow at normal operating temperatures (i.e. plasma heating alone). The remaining heat needed to achieve enough vapor flow to sustain thruster discharge came from a counter-wound resistive heater located behind the anode. The control system has the ability to arrest thermal runaway in a direct evaporation feed system and stabilize the discharge current during voltage-limited operation. A proportional-integral-derivative control algorithm was implemented to enable automated operation of the mass flow control system using the discharge current as the measured variable and the anode heater current as the controlled parameter. Steady-state operation at constant voltage with discharge current excursions less than 0.35 A was demonstrated for 70 min. Using this long-duration method, stable operation was achieved with heater powers as low as 6% of the total discharge power. Using the thermal mass flow control system the thruster operated stably enough and long enough that performance measurements could be obtained and compared to the performance of the thruster using xenon propellant. It was found that when operated with magnesium, the thruster has thrust ranging from 34 mN at 200 V to 39 mN at 300 V with 1.7 mg/s of propellant. It was found to have 27 mN of thrust at 300 V using 1.0 mg/s of propellant. The thrust-to-power ratio ranged from 24 mN/kW at 200 V to 18 mN/kW at 300 volts. The specific impulse was 2000 s at 200 V and upwards of 2700 s at 300 V. The anode efficiency was found to be ~23% using magnesium, which is substantially lower than the 40% anode efficiency of xenon at approximately equivalent molar flow rates. Measurements in the plasma plume of the thruster—operated using magnesium and xenon propellants—were obtained using a Faraday probe to measure off-axis current distribution, a retarding potential analyzer to measure ion energy, and a double Langmuir probe to measure plasma density, electron temperature, and plasma potential. Additionally, the off axis current distributions and ion energy distributions were compared to measurements made in krypton and bismuth plasmas obtained in previous studies of the same thruster. Comparisons showed that magnesium had the largest beam divergence of the four propellants while the others had similar divergence. The comparisons also showed that magnesium and krypton both had very low voltage utilization compared to xenon and bismuth. It is likely that the differences in plume structure are due to the atomic differences between the propellants; the ionization mean free path goes down with increasing atomic mass. Magnesium and krypton have long ionization mean free paths and therefore require physically larger thruster dimensions for efficient thruster operation and would benefit from magnetic shielding.