963 resultados para Lefschetz-Hopf Theorem
Resumo:
This paper is devoted to the problems of finding the load flow feasibility, saddle node, and Hopf bifurcation boundaries in the space of power system parameters. The first part contains a review of the existing relevant approaches including not-so-well-known contributions from Russia. The second part presents a new robust method for finding the power system load flow feasibility boundary on the plane defined by any three vectors of dependent variables (nodal voltages), called the Delta plane. The method exploits some quadratic and linear properties of the load now equations and state matrices written in rectangular coordinates. An advantage of the method is that it does not require an iterative solution of nonlinear equations (except the eigenvalue problem). In addition to benefits for visualization, the method is a useful tool for topological studies of power system multiple solution structures and stability domains. Although the power system application is developed, the method can be equally efficient for any quadratic algebraic problem.
Resumo:
Many layered metals such as quasi-two-dimensional organic molecular crystals show properties consistent with a Fermi-liquid description at low temperatures. The effective masses extracted from the temperature dependence of the magnetic oscillations observed in these materials are in the range, m(c)*/m(e) similar to 1 - 7, suggesting that these systems are strongly correlated. However, the ratio m(c)*/m(e) contains both the renormalization due to the electron-electron interaction and the periodic potential of the lattice. We show that for any quasi-two-dimensional band structure, the cyclotron mass is proportional to the density-of-states at the Fermi energy. Due to Luttinger's theorem, this result is also valid in the presence of interactions. We then evaluate m(c) for several model band structures for the beta, kappa, and theta families of (BEDT-TTF)(2)X, where BEDT-TTF is bis-(ethylenedithia-tetrathiafulvalene) and X is an anion. We find that for kappa-(BEDT-TTF)(2)X, the cyclotron mass of the beta orbit, m(c)*(beta) is close to 2 m(c)*(alpha), where m(c)*(alpha) is the effective mass of the alpha orbit. This result is fairly insensitive to the band-structure details. For a wide range of materials we compare values of the cyclotron mass deduced from band-structure calculations to values deduced from measurements of magnetic oscillations and the specific-heat coefficient gamma.
Resumo:
We prove that for any real number p with 1 p less than or equal to n - 1, the map x/\x\ : B-n --> Sn-1 is the unique minimizer of the p-energy functional integral(Bn) \delu\(p) dx among all maps in W-1,W-p (B-n, Sn-1) with boundary value x on phiB(n).
Resumo:
In [Haiyin Gao, Ke Wang, Fengying Wei, Xiaohua Ding, Massera-type theorem and asymptotically periodic Logistic equations, Nonlinear Analysis: Real World Applications 7 (2006) 1268-1283, Lemma 2.1] it is established that a scalar S-asymptotically to-periodic function (that is, a continuous and bounded function f : [0, infinity) -> R such that lim(t ->infinity)(f (t + omega) - f (t)) = 0) is asymptotically omega-periodic. In this note we give two examples to show that this assertion is false. (C) 2008 Elsevier Ltd. Ail rights reserved.
Resumo:
We discuss the expectation propagation (EP) algorithm for approximate Bayesian inference using a factorizing posterior approximation. For neural network models, we use a central limit theorem argument to make EP tractable when the number of parameters is large. For two types of models, we show that EP can achieve optimal generalization performance when data are drawn from a simple distribution.
Resumo:
The main problem with current approaches to quantum computing is the difficulty of establishing and maintaining entanglement. A Topological Quantum Computer (TQC) aims to overcome this by using different physical processes that are topological in nature and which are less susceptible to disturbance by the environment. In a (2+1)-dimensional system, pseudoparticles called anyons have statistics that fall somewhere between bosons and fermions. The exchange of two anyons, an effect called braiding from knot theory, can occur in two different ways. The quantum states corresponding to the two elementary braids constitute a two-state system allowing the definition of a computational basis. Quantum gates can be built up from patterns of braids and for quantum computing it is essential that the operator describing the braiding-the R-matrix-be described by a unitary operator. The physics of anyonic systems is governed by quantum groups, in particular the quasi-triangular Hopf algebras obtained from finite groups by the application of the Drinfeld quantum double construction. Their representation theory has been described in detail by Gould and Tsohantjis, and in this review article we relate the work of Gould to TQC schemes, particularly that of Kauffman.
Resumo:
Motivated by the unconventional properties and rich phase diagram of NaxCoO2 we consider the electronic and magnetic properties of a two-dimensional Hubbard model on an isotropic triangular lattice doped with electrons away from half-filling. Dynamical mean-field theory (DMFT) calculations predict that for negative intersite hopping amplitudes (t < 0) and an on-site Coulomb repulsion, U, comparable to the bandwidth, the system displays properties typical of a weakly correlated metal. In contrast, for t > 0 a large enhancement of the effective mass, itinerant ferromagnetism, and a metallic phase with a Curie-Weiss magnetic susceptibility are found in a broad electron doping range. The different behavior encountered is a consequence of the larger noninteracting density of states (DOS) at the Fermi level for t > 0 than for t < 0, which effectively enhances the mass and the scattering amplitude of the quasiparticles. The shape of the DOS is crucial for the occurrence of ferromagnetism as for t > 0 the energy cost of polarizing the system is much smaller than for t < 0. Our observation of Nagaoka ferromagnetism is consistent with the A-type antiferromagnetism (i.e., ferromagnetic layers stacked antiferromagnetically) observed in neutron scattering experiments on NaxCoO2. The transport and magnetic properties measured in NaxCoO2 are consistent with DMFT predictions of a metal close to the Mott insulator and we discuss the role of Na ordering in driving the system towards the Mott transition. We propose that the Curie-Weiss metal phase observed in NaxCoO2 is a consequence of the crossover from a bad metal with incoherent quasiparticles at temperatures T > T-* and Fermi liquid behavior with enhanced parameters below T-*, where T-* is a low energy coherence scale induced by strong local Coulomb electron correlations. Our analysis also shows that the one band Hubbard model on a triangular lattice is not enough to describe the unusual properties of NaxCoO2 and is used to identify the simplest relevant model that captures the essential physics in NaxCoO2. We propose a model which allows for the Na ordering phenomena observed in the system which, we propose, drives the system close to the Mott insulating phase even at large dopings.
Resumo:
We identify a test of quantum mechanics versus macroscopic local realism in the form of stochastic electrodynamics. The test uses the steady-state triple quadrature correlations of a parametric oscillator below threshold.
Resumo:
A program can be refined either by transforming the whole program or by refining one of its components. The refinement of a component is, for the main part, independent of the remainder of the program. However, refinement of a component can depend on the context of the component for information about the variables that are in scope and what their types are. The refinement can also take advantage of additional information, such as any precondition the component can assume. The aim of this paper is to introduce a technique, which we call program window inference, to handle such contextual information during derivations in the refinement calculus. The idea is borrowed from a technique, called window inference, for handling context in theorem proving. Window inference is the primary proof paradigm of the Ergo proof editor. This tool has been extended to mechanize refinement using program window inference. (C) 1997 Elsevier Science B.V.
Resumo:
This paper offers a defense of backwards in time causation models in quantum mechanics. Particular attention is given to Cramer's transactional account, which is shown to have the threefold virtue of solving the Bell problem, explaining the complex conjugate aspect of the quantum mechanical formalism, and explaining various quantum mysteries such as Schrodinger's cat. The question is therefore asked, why has this model not received more attention from physicists and philosophers? One objection given by physicists in assessing Cramer's theory was that it is not testable. This paper seeks to answer this concern by utilizing an argument that backwards causation models entail a fork theory of causal direction. From the backwards causation model together with the fork theory one can deduce empirical predictions. Finally, the objection that this strategy is questionable because of its appeal to philosophy is deflected.
Resumo:
A k-star is the graph K-1,K-k. We prove a general theorem about k-star factorizations of Cayley graphs. This is used to give necessary and sufficient conditions for the existence of k-star factorizations of any power (K-q)(S) of a complete graph with prime power order q, products C-r1 x C-r2 x ... x C-rk of k cycles of arbitrary lengths, and any power (C-r)(S) of a cycle of arbitrary length. (C) 2001 John Wiley & Sons, Inc.
Resumo:
Cystic fibrosis (CF) is a complex disease affecting epithelial ion transport. There are not many diseases like CF that have triggered such intense research activities. The complexity of the disease is due to mutations in the CFTR protein, now known to be a Cl- channel and a regulator of other transport proteins. The various interactions and the large number of disease-causing CFTR mutations is the reason for a variable genotype-phenotype correlation and sometimes unpredictable clinical manifestation. Nevertheless, the research of the past 10 years has resulted in a tremendous increase in knowledge, not only in regard to CFTR but also in regard to molecular interactions and completely new means of ion channel and gene therapy.
Resumo:
Whether contemporary human populations are still evolving as a result of natural selection has been hotly debated. For natural selection to cause evolutionary change in a trait, variation in the trait must be correlated with fitness and be genetically heritable and there must be no genetic constraints to evolution. These conditions have rarely been tested in human populations. In this study, data from a large twin cohort were used to assess whether selection Will cause a change among women in contemporary Western population for three life-history traits: age at menarche, age at first reproduction, and age at menopause. We control for temporal variation in fecundity (the baby boom phenomenon) and differences between women in educational background and religious affiliation. University-educated women have 35% lower fitness than those with less than seven years education, and Roman Catholic women have about 20% higher fitness than those of other religions. Although these differences were significant, education and religion only accounted for 2% and 1% of variance in fitness, respectively. Using structural equation modeling, we reveal significant genetic influences for all three life-history traits, with heritability estimates of 0.50, 0.23, and 0.45, respectively. However, strong genetic covariation with reproductive fitness could only be demonstrated for age at first reproduction, with much weaker covariation for age at menopause and no significant covariation for age at menarche. Selection may, therefore, lead to the evolution of earlier age at first reproduction in this population. We also estimate substantial heritable variation in fitness itself, with approximately 39% of the variance attributable to additive genetic effects, the remainder consisting of unique environmental effects and small effects from education and religion. We discuss mechanisms that could be maintaining such a high heritability for fitness. Most likely is that selection is now acting on different traits from which it did in pre-industrial human populations.
Resumo:
1. Parasitoids are predicted to spend longer in patches with more hosts, but previous work on Cotesia rubecula (Marshall) has not upheld this prediction, Tests of theoretical predictions may be affected by the definition of patch leaving behaviour, which is often ambiguous. 2. In this study whole plants were considered as patches and assumed that wasps move within patches by means of walking or flying. Within-patch and between-patch flights were distinguished based on flight distance. The quality of this classification was tested statistically by examination of log-survivor curves of flight times. 3. Wasps remained longer in patches with higher host densities, which is consistent with predictions of the marginal value theorem (Charnov 1976). tinder the assumption that each flight indicates a patch departure, there is no relationship between host density and leaving tendency. 4. Oviposition influences the patch leaving behaviour of wasps in a count down fashion (Driessen et al. 1995), as predicted by an optimal foraging model (Tenhumberg, Keller & Possingham 2001). 5. Wasps spend significantly longer in the first patch encountered following release, resulting in an increased rate of superparasitism.