933 resultados para Laue crystallography
Resumo:
The influence of different parts of the interaction potential on the microscopic behavior of simple liquid metals is investigated by molecular dynamics simulation. The role of the soft-core repulsive, short-range attractive, and long-range oscillatory forces on the properties of liquid lithium close to the triple point is analyzed by comparing the results from simulations of identical systems but truncating the potential at different distances. Special attention is paid to dynamic collective properties such as the dynamic structure factors, transverse current correlation functions, and transport coefficients. It is observed that, in general, the effects of the short-range attractive forces are important. On the contrary, the influence of the oscillatory long-range interactions is considerably less, being the most pronounced for the dynamic structure factor at long wavelengths. The results of this work suggest that the influence of the attractive forces becomes less significant when temperature and density increase.
Resumo:
We investigate the phase behavior of a single-component system in three dimensions with spherically-symmetric, pairwise-additive, soft-core interactions with an attractive well at a long distance, a repulsive soft-core shoulder at an intermediate distance, and a hard-core repulsion at a short distance, similar to potentials used to describe liquid systems such as colloids, protein solutions, or liquid metals. We showed [Nature (London) 409, 692 (2001)] that, even with no evidence of the density anomaly, the phase diagram has two first-order fluid-fluid phase transitions, one ending in a gas¿low-density-liquid (LDL) critical point, and the other in a gas¿high-density-liquid (HDL) critical point, with a LDL-HDL phase transition at low temperatures. Here we use integral equation calculations to explore the three-parameter space of the soft-core potential and perform molecular dynamics simulations in the interesting region of parameters. For the equilibrium phase diagram, we analyze the structure of the crystal phase and find that, within the considered range of densities, the structure is independent of the density. Then, we analyze in detail the fluid metastable phases and, by explicit thermodynamic calculation in the supercooled phase, we show the absence of the density anomaly. We suggest that this absence is related to the presence of only one stable crystal structure.
Resumo:
The self-intermediate dynamic structure factor Fs(k,t) of liquid lithium near the melting temperature is calculated by molecular dynamics. The results are compared with the predictions of several theoretical approaches, paying special attention to the Lovesey model and the Wahnstrm and Sjgren mode-coupling theory. To this end the results for the Fs(k,t) second memory function predicted by both models are compared with the ones calculated from the simulations.
Resumo:
Using event-driven molecular dynamics simulations, we study a three-dimensional one-component system of spherical particles interacting via a discontinuous potential combining a repulsive square soft core and an attractive square well. In the case of a narrow attractive well, it has been shown that this potential has two metastable gas-liquid critical points. Here we systematically investigate how the changes of the parameters of this potential affect the phase diagram of the system. We find a broad range of potential parameters for which the system has both a gas-liquid critical point C1 and a liquid-liquid critical point C2. For the liquid-gas critical point we find that the derivatives of the critical temperature and pressure, with respect to the parameters of the potential, have the same signs: they are positive for increasing width of the attractive well and negative for increasing width and repulsive energy of the soft core. This result resembles the behavior of the liquid-gas critical point for standard liquids. In contrast, for the liquid-liquid critical point the critical pressure decreases as the critical temperature increases. As a consequence, the liquid-liquid critical point exists at positive pressures only in a finite range of parameters. We present a modified van der Waals equation which qualitatively reproduces the behavior of both critical points within some range of parameters, and gives us insight on the mechanisms ruling the dependence of the two critical points on the potential¿s parameters. The soft-core potential studied here resembles model potentials used for colloids, proteins, and potentials that have been related to liquid metals, raising an interesting possibility that a liquid-liquid phase transition may be present in some systems where it has not yet been observed.
Resumo:
The dependence of the dynamic properties of liquid metals and Lennard-Jones fluids on the characteristics of the interaction potentials is analyzed. Molecular-dynamics simulations of liquids in analogous conditions but assuming that their particles interact either through a Lennard-Jones or a liquid-metal potential were carried out. The Lennard-Jones potentials were chosen so that both the effective size of the particles and the depth of the potential well were very close to those of the liquid-metal potentials. In order to investigate the extent to which the dynamic properties of liquids depend on the short-range attractive interactions as well as on the softness of the potential cores, molecular-dynamics simulations of the same systems but assuming purely repulsive interactions with the same potential cores were also performed. The study includes both singleparticle dynamic properties, such as the velocity autocorrelation functions, and collective dynamic properties, such as the intermediate scattering funcfunctions, and collective dynamic properties, such as the intermediate scattering functions, the dynamic structure factors, the longitudinal and transverse current correlations, and the transport coefficients.
Resumo:
Molecular dynamics simulation is applied to the study of the diffusion properties in binary liquid mixtures made up of soft-sphere particles with different sizes and masses. Self- and distinct velocity correlation functions and related diffusion coefficients have been calculated. Special attention has been paid to the dynamic cross correlations which have been computed through recently introduced relative mean molecular velocity correlation functions which are independent on the reference frame. The differences between the distinct velocity correlations and diffusion coefficients in different reference frames (mass-fixed, number-fixed, and solvent-fixed) are discussed.
Resumo:
Time correlation functions between the velocity of a tagged particle and velocities of particles within specified ranges of initial separations have been obtained by molecular dynamics simulation. These correlation functions have allowed us to analyze the momentum transfer between particles in different coordination shells. Two simple liquids at very different densities and two purely repulsive potentials with very different softnesses have been considered. The longitudinal correlations, which are the velocity cross-correlations along the initial direction defined by the centers of two given particles, have been calculated separately. It has been proven that these correlations should be attributed to particles both in front of and behind the central one. As with propagating longitudinal modes, they are strongly dependent on the softness of the potential core. Some characteristic features of the velocity correlation functions after the initial rise should be related to nonlongitudinal correlations. It has been shown that velocity cross-correlations between distinct particles cannot only be attributed to the direct interactions among particles, but also to the motions induced by the movement of a tagged particle on their neighbors.
Resumo:
Polycrystalline Ni-Mn-Ga thin films have been deposited by the pulsed laser deposition (PLD) technique, using slices of a Ni-Mn-Ga single crystal as targets and onto Si (100) substrates at temperatures ranging from 673 K up to 973 K. Off-stoichiometry thin films were deposited at a base pressure of 1×10-6-Torr or in a 5 mTorr Ar atmosphere. Samples deposited in vacuum and temperatures above 823 K are magnetic at room temperature and show the austenitic {220} reflection in their x-ray diffraction patterns. The temperature dependences of both electrical resistance and magnetic susceptibility suggest that these samples exhibit a structural martensitic transition at around 260 K. The magnetoresistance ratio at low temperature can be as high as 1.3%, suggesting the existence of a granular structure in the films
Resumo:
By generalizing effective-medium theory to the case of orientationally ordered but positionally disordered two component mixtures, it is shown that the anisotropic dielectric tensor of oxide superconductors can be extracted from microwave measurements on oriented crystallites of YBa2Cu3O7¿x embedded in epoxy. Surprisingly, this technique appears to be the only one which can access the resistivity perpendicular to the copper¿oxide planes in crystallites that are too small for depositing electrodes. This possibility arises in part because the real part of the dielectric constant of oxide superconductors has a large magnitude. The validity of the effective-medium approach for orientationally ordered mixtures is corroborated by simulations on two¿dimensional anisotropic random resistor networks. Analysis of the experimental data suggests that the zero-temperature limit of the finite frequency resistivity does not vanish along the c axis, a result which would simply the existence of states at the Fermi surface, even in the superconducting state
Resumo:
Point defects of opposite signs can alternately nucleate on the -1/2 disclination line that forms near the free surface of a confined nematic liquid crystal. We show the existence of metastable configurations consisting of periodic repetitions of such defects. These configurations are characterized by a minimal interdefect spacing that is seen to depend on sample thickness and on an applied electric field. The time evolution of the defect distribution suggests that the defects attract at small distances and repel at large distances.
Resumo:
The influence of an inert electrolyte (sodium sulfate) on quasi-two-dimensional copper electrodeposition from a nondeaerated aqueous copper sulfate solution has been analyzed. The different morphologies for a fixed concentration of CuSO4 have been classified in a diagram in terms of the applied potential and the inert electrolyte concentration. The main conclusion is the extension of the well-known Ohmic model for the homogeneous growth regime for copper sulfate solutions with small amounts of sodium sulfate. Moreover, we have observed the formation of fingerlike deposits at large applied potential and inert electrolyte concentration values, before hydrogen evolution becomes the main electrode reaction.
Resumo:
In this article we report our systematic studies of the dependence on the sample thickness of the onset parameters of the instability of the nematic-isotropic interface during directional growth and melting, in homeotropic or planar anchoring.
Resumo:
The electronic structure of an isolated oxygen vacancy in SrTiO3 has been investigated with a variety of ab initio quantum mechanical approaches. In particular we compared pure density functional theory (DFT) approaches with the Hartree-Fock method, and with hybrid methods where the exchange term is treated in a mixed way. Both local cluster models and periodic calculations with large supercells containing up to 80 atoms have been performed. Both diamagnetic (singlet state) and paramagnetic (triplet state) solutions have been considered. We found that the formation of an O vacancy is accompanied by the transfer of two electrons to the 3d(z2) orbitals of the two Ti atoms along the Ti-Vac-Ti axis. The two electrons are spin coupled and the ground state is diamagnetic. New states associated with the defect center appear in the gap just below the conduction band edge. The formation energy computed with respect to an isolated oxygen atom in the triplet state is 9.4 eV.