971 resultados para KINETIC OSCILLATIONS
Resumo:
We predict the loss of superfluidity in a Bose-Einstein condensate in an axially symmetric harmonic trap alone during resonant collective oscillations via a classical dynamical transition. The forced resonant oscillation can be initiated by (a) periodic modulation of the atomic scattering length with a frequency that equals twice the radial trapping frequency or multiples thereof, or by (b) periodic modulation of the radial trapping potential with a frequency that equals the radial trapping frequency or multiples thereof. Suggestion for future experiment is made. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
We point out that solar neutrino oscillations with large mixing angle as evidenced in current solar neutrino data have a strong impact on strategies for diagnosing collapse-driven supernova (SN) through neutrino observations. Such oscillations induce a significant deformation of the energy spectra of neutrinos, thereby allowing us to obtain otherwise inaccessible features of SN neutrino spectra. We demonstrate that one can determine temperatures and luminosities of non-electron flavor neutrinos by observing (υ) over bar (e) from galactic SN in massive water Cherenkov detectors by the charged current reactions on protons. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this short lecture, I discuss some basic phenomenological aspects of CP and T violation in neutrino oscillation. Using CP/T trajectory diagrams in the bi-probability space, I try to sketch out some essential features of the interplay between the effect of CP/T violating phase and that of the matter in neutrino oscillation.
Resumo:
Neutrino oscillations are treated from the point of view of relativistic first quantized theories and compared to second quantized treatments. Within first quantized theories, general oscillation probabilities can be found for Dirac fermions and charged spin 0 bosons. A clear modification in the oscillation formulas can be obtained and its origin is elucidated and confirmed to be inevitable from completeness and causality requirements. The left-handed nature of created and detected neutrinos can also be implemented in the first quantized Dirac theory in the presence of mixing; the probability loss due to the changing of initially left-handed neutrinos to the undetected right-handed neutrinos can be obtained in analytic form. Concerning second quantized approaches, it is shown in a calculation using virtual neutrino propagation that both neutrinos and antineutrinos may also contribute as intermediate particles. The sign of the contributing neutrino energy may have to be chosen explicitly without being automatic in the formalism. At last, a simple second quantized description of the flavor oscillation phenomenon is devised. In this description there is no interference terms between positive and negative components, but it still gives simple normalized oscillation probabilities. A new effect appearing in this context is an inevitable but tiny violation of the initial flavor of neutrinos. The probability loss due to the conversion of left-handed neutrinos to right-handed neutrinos is also presented.
Resumo:
We study certain stationary and time-evolution problems of trapped Bose-Einstein condensates using the numerical solution of the Gross-Pitaevskii (GP) equation with both spherical and axial symmetries. We consider time-evolution problems initiated by suddenly changing the interatomic scattering length or harmonic trapping potential in a stationary condensate. These changes introduce oscillations in the condensate which are studied in detail. We use a time iterative split-step method for the solution of the time-dependent GP equation, where all nonlinear and linear non-derivative terms are treated separately from the time propagation with the kinetic energy terms. Even for an arbitrarily strong nonlinear term this leads to extremely accurate and stable results after millions of time iterations of the original equation.
Resumo:
Recently the CP trajectory diagram was introduced to demonstrate the difference between the intrinsic CP violating effects to those induced by matter for neutrino oscillation. In this Letter we introduce the T trajectory diagram. In these diagrams the probability for a given oscillation process is plotted versus the probability for the CP- or the T-conjugate processes, which forms an ellipse as the CP- or T-violating phase is varied. Since the CP- and the T-conjugate processes are related by CPT symmetry, even in the presence of matter, these two trajectory diagrams are closely related with each other and form a unified description of neutrino oscillations in matter. (C) 2002 Published by Elsevier B.V. B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper we search for the dynamics of a simple portal structure in the free and in the periodic excitation cases. By using the Center Manifold approach and Averaging Method, we obtain results on both stability and bifurcation of equilibrium points and periodic orbits. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
It is of major importance to consider non-ideal energy sources in engineering problems. They act on an oscillating system and at the same time experience a reciprocal action from the system. Here, a non-ideal system is studied. In this system, the interaction between source energy and motion is accomplished through a special kind of friction. Results about the stability and instability of the equilibrium point of this system are obtained. Moreover, its bifurcation curves are determined. Hopf bifurcations are found in the set of parameters of the oscillating system.
Resumo:
We study how oscillations in the boundary of a domain affect the behavior of solutions of elliptic equations with nonlinear boundary conditions of the type partial derivative u/partial derivative n + g(x, u) = 0. We show that there exists a function gamma defined on the boundary, that depends on an the oscillations at the boundary, such that, if gamma is a bounded function, then, for all nonlinearities g, the limiting boundary condition is given by partial derivative u/partial derivative n + gamma(x)g(x, u) = 0 (Theorem 2.1, Case 1). Moreover, if g is dissipative and gamma infinity then we obtain a Dirichlet an boundary condition (Theorem 2.1, Case 2).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The organic fraction of urban solid residues disposed of in sanitary landfills during the decomposition yields biogas and leachate, which are sources of pollution. Leachate is a resultant liquid from the decomposition of substances contained in solid residues and it contains in its composition organic and inorganic substances. Literature shows an increase in the use of thermoanalytical techniques to study the samples with environmental interest, this way thermogravimetry is used in this research. Thermogravimetric studies (TG curves) carried out on leachate and residues shows similarities in the thermal behavior, although presenting complex composition. Residue samples were collected from landfills, composting plants, sewage treatment stations, leachate, which after treatment, were submitted for thermal analysis. Kinetic parameters were determined using the Flynn-Wall-Ozawa method. In this case they show little divergence between the kinetic parameter that can be attributed to different decomposition reaction and presence of organic compounds in different phases of the decomposition with structures modified during degradation process and also due to experimental conditions of analysis.
Resumo:
Meglumine, (2R,3R,4R,5S)-6-methylaminohexane-1,2,3,4,5-pentol, is a carbohydrate derived from sorbitol in which the hydroxyl group in position one is replaced by a methylamine group. It forms binary adducts with substances having carboxyl groups, which have in common the presence of hydrogen bonding as the main force in the stabilization of these species. During melting, adducts of meglumine with flunixin (2-[[2-methyl-3-(trifluoromethyl)phenyl]amino]pyridine-3-carboxylic acid) polymerize or self-assemble in amorphous supramolecular structures with molecular weights around 2.0 x 10(5) kDa. DSC curves, in a first heating, show isomorphic transitions where the last one at 137 A degrees C for the flunixin-meglumine adduct originated the supramolecular amorphous polymers with glass transition around 49.5 A degrees C. The kinetic parameters for the thermal decomposition step of the polymers were determined by the Capela-Ribeiro non-linear isoconversional method. From data for the TG curves in nitrogen atmosphere and heating rates of 5, 10, 15, and 20 A degrees C min(-1), the E (alpha) and B (alpha) terms could be determined and, consequently, the pre-exponential factor, A(alpha), as well as the kinetic model, g(alpha).
Resumo:
Urban solid residues are constituted of food remaining, grass leaves, fruit peelings, paper, cardboard, rubber, plastic, etc. The organic fraction formed represents about 50% during the decomposition yields biogas and leachate, which are sources of pollution. Residue samples were collected from the landfill in different and cells from several ages and the corresponding leachate, both after treatments, were submitted to thermal analysis. Kinetic parameters were determined using Flynn-Wall-Ozawa method. The linear relation between the two kinetic parameters (ln A and E) was verified for organic residue urban's samples, but not for leachate's sample. The occurred difference can be attributed to the constituents present in leachate.