840 resultados para Image-based cytometry
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Informática Médica)
Resumo:
Fluorescence in situ hybridization (FISH) is based on the use of fluorescent staining dyes, however, the signal intensity of the images obtained by microscopy is seldom quantified with accuracy by the researcher. The development of innovative digital image processing programs and tools has been trying to overcome this problem, however, the determination of fluorescent intensity in microscopy images still has issues due to the lack of precision in the results and the complexity of existing software. This work presents FISHji, a set of new ImageJ methods for automated quantification of fluorescence in images obtained by epifluorescence microscopy. To validate the methods, results obtained by FISHji were compared with results obtained by flow cytometry. The mean correlation between FISHji and flow cytometry was high and significant, showing that the imaging methods are able to accurately assess the signal intensity of fluorescence images. FISHji are available for non-commercial use at http://paginas.fe.up.pt/nazevedo/.
Resumo:
BACKGROUND: Cone-beam computed tomography (CBCT) image-guided radiotherapy (IGRT) systems are widely used tools to verify and correct the target position before each fraction, allowing to maximize treatment accuracy and precision. In this study, we evaluate automatic three-dimensional intensity-based rigid registration (RR) methods for prostate setup correction using CBCT scans and study the impact of rectal distension on registration quality. METHODS: We retrospectively analyzed 115 CBCT scans of 10 prostate patients. CT-to-CBCT registration was performed using (a) global RR, (b) bony RR, or (c) bony RR refined by a local prostate RR using the CT clinical target volume (CTV) expanded with 1-to-20-mm varying margins. After propagation of the manual CT contours, automatic CBCT contours were generated. For evaluation, a radiation oncologist manually delineated the CTV on the CBCT scans. The propagated and manual CBCT contours were compared using the Dice similarity and a measure based on the bidirectional local distance (BLD). We also conducted a blind visual assessment of the quality of the propagated segmentations. Moreover, we automatically quantified rectal distension between the CT and CBCT scans without using the manual CBCT contours and we investigated its correlation with the registration failures. To improve the registration quality, the air in the rectum was replaced with soft tissue using a filter. The results with and without filtering were compared. RESULTS: The statistical analysis of the Dice coefficients and the BLD values resulted in highly significant differences (p<10(-6)) for the 5-mm and 8-mm local RRs vs the global, bony and 1-mm local RRs. The 8-mm local RR provided the best compromise between accuracy and robustness (Dice median of 0.814 and 97% of success with filtering the air in the rectum). We observed that all failures were due to high rectal distension. Moreover, the visual assessment confirmed the superiority of the 8-mm local RR over the bony RR. CONCLUSION: The most successful CT-to-CBCT RR method proved to be the 8-mm local RR. We have shown the correlation between its registration failures and rectal distension. Furthermore, we have provided a simple (easily applicable in routine) and automatic method to quantify rectal distension and to predict registration failure using only the manual CT contours.
Resumo:
CD8 T cells play a key role in mediating protective immunity against selected pathogens after vaccination. Understanding the mechanism of this protection is dependent upon definition of the heterogeneity and complexity of cellular immune responses generated by different vaccines. Here, we identify previously unrecognized subsets of CD8 T cells based upon analysis of gene-expression patterns within single cells and show that they are differentially induced by different vaccines. Three prime-boost vector combinations encoding HIV Env stimulated antigen-specific CD8 T-cell populations of similar magnitude, phenotype, and functionality. Remarkably, however, analysis of single-cell gene-expression profiles enabled discrimination of a majority of central memory (CM) and effector memory (EM) CD8 T cells elicited by the three vaccines. Subsets of T cells could be defined based on their expression of Eomes, Cxcr3, and Ccr7, or Klrk1, Klrg1, and Ccr5 in CM and EM cells, respectively. Of CM cells elicited by DNA prime-recombinant adenoviral (rAd) boost vectors, 67% were Eomes(-) Ccr7(+) Cxcr3(-), in contrast to only 7% and 2% stimulated by rAd5-rAd5 or rAd-LCMV, respectively. Of EM cells elicited by DNA-rAd, 74% were Klrk1(-) Klrg1(-)Ccr5(-) compared with only 26% and 20% for rAd5-rAd5 or rAd5-LCMV. Definition by single-cell gene profiling of specific CM and EM CD8 T-cell subsets that are differentially induced by different gene-based vaccines will facilitate the design and evaluation of vaccines, as well as enable our understanding of mechanisms of protective immunity.
Resumo:
The investigation of perceptual and cognitive functions with non-invasive brain imaging methods critically depends on the careful selection of stimuli for use in experiments. For example, it must be verified that any observed effects follow from the parameter of interest (e.g. semantic category) rather than other low-level physical features (e.g. luminance, or spectral properties). Otherwise, interpretation of results is confounded. Often, researchers circumvent this issue by including additional control conditions or tasks, both of which are flawed and also prolong experiments. Here, we present some new approaches for controlling classes of stimuli intended for use in cognitive neuroscience, however these methods can be readily extrapolated to other applications and stimulus modalities. Our approach is comprised of two levels. The first level aims at equalizing individual stimuli in terms of their mean luminance. Each data point in the stimulus is adjusted to a standardized value based on a standard value across the stimulus battery. The second level analyzes two populations of stimuli along their spectral properties (i.e. spatial frequency) using a dissimilarity metric that equals the root mean square of the distance between two populations of objects as a function of spatial frequency along x- and y-dimensions of the image. Randomized permutations are used to obtain a minimal value between the populations to minimize, in a completely data-driven manner, the spectral differences between image sets. While another paper in this issue applies these methods in the case of acoustic stimuli (Aeschlimann et al., Brain Topogr 2008), we illustrate this approach here in detail for complex visual stimuli.
Resumo:
Defining an efficient training set is one of the most delicate phases for the success of remote sensing image classification routines. The complexity of the problem, the limited temporal and financial resources, as well as the high intraclass variance can make an algorithm fail if it is trained with a suboptimal dataset. Active learning aims at building efficient training sets by iteratively improving the model performance through sampling. A user-defined heuristic ranks the unlabeled pixels according to a function of the uncertainty of their class membership and then the user is asked to provide labels for the most uncertain pixels. This paper reviews and tests the main families of active learning algorithms: committee, large margin, and posterior probability-based. For each of them, the most recent advances in the remote sensing community are discussed and some heuristics are detailed and tested. Several challenging remote sensing scenarios are considered, including very high spatial resolution and hyperspectral image classification. Finally, guidelines for choosing the good architecture are provided for new and/or unexperienced user.
Resumo:
A method of objectively determining imaging performance for a mammography quality assurance programme for digital systems was developed. The method is based on the assessment of the visibility of a spherical microcalcification of 0.2 mm using a quasi-ideal observer model. It requires the assessment of the spatial resolution (modulation transfer function) and the noise power spectra of the systems. The contrast is measured using a 0.2-mm thick Al sheet and Polymethylmethacrylate (PMMA) blocks. The minimal image quality was defined as that giving a target contrast-to-noise ratio (CNR) of 5.4. Several evaluations of this objective method for evaluating image quality in mammography quality assurance programmes have been considered on computed radiography (CR) and digital radiography (DR) mammography systems. The measurement gives a threshold CNR necessary to reach the minimum standard image quality required with regards to the visibility of a 0.2-mm microcalcification. This method may replace the CDMAM image evaluation and simplify the threshold contrast visibility test used in mammography quality.
Resumo:
Sphingomonas wittichii is a gram-negative Alpha-proteobacterium, capable of degrading xenobiotic compounds such as dibenzofuran (DBF), dibenzo-p-dioxin, carbazole, 2-hydroxybiphenyl or nitro diphenyl ether herbicides. The metabolism of strain RW1 has been the subject of previous studies and a number of genes involved in DBF degradation have been characterized. It is known that RW1 posseses a unique initial DBF dioxygenase (encoded by the dxnAl gene) that catalyzes the first step in the degradation pathway. None of the organisms known to be able to degrade DBF have a similar dioxygenase, the closest match being the DBF dioxygenase from Rhodococcus sp. with an overall amino acid similarity of 45%. Genes participating in the conversion of the metabolite salicylate via the ortho-cleavage pathway to TCA cycle intermediates were identified as well. Apart from this scarce information, however, there is a lack of global knowledge on the genes that are involved in DBF degradation by strain RW1 and the influence of environmental stresses on DBF-dependent global gene expression. A global analysis is necessary, because it may help to better understand the behaviour of the strain under field conditions and suggest improvements for the current bioaugmentation practice. Chapter 2 describes the results of whole-genome analysis to characterize the genes involved in DBF degradation by RW1. Micro-array analysis allowed us to detect differences in gene transcription when strain RW1 was exposed to DBF. This was complemented by ultra-high throughput sequencing of mutants no longer capable of growing on salicylate and DBF. Some of the genes of the ortho-cleavage pathway were induced 2 to 4 times in the presence of DBF, as well as the initial DBF dioxygenase. However two gene clusters, named 4925 and 5102 were induced up to 19 times in response to DBF induction. The cluster 4925 is putatively participating in a meta-cleavage pathway while the cluster 5102 might be part of a gentisate pathway. The three pathways, ortho-cleavage, meta-cleavage and gentisate pathway seem to be active in parallel when strain RW1 is exposed to DBF, presenting evidence for a redundancy of genes for DBF degradation in the genome of RW1. Chapter 3 focuses on exploiting genetic tools to construct bioreporters representative for DBF degradation in RW1. A set of basic tools for genetic manipulation in Sphingomonas wittichii RW1 was tested and optimized. Both plasmids and mini-transposons were evaluated for their ability to be maintained in RW1 with or without antibiotic selection pressure, and for their ability to lead to fluorescent protein expression in strain RW1 from a constitutive promoter. Putative promoter regions of three of the previously found DBF-induced genes (Swit_4925, Swit_5102 and Swit_4897-dxnAl) were then used to construct eg/^-bioreporters in RW1. Chapter 4 describes the use of the constructed RW1-based bioreporter strains for examining the expression of the DBF degradation pathway genes under microcosm conditions. The bioreporter strains were first exposed to different carbon sources in liquid culture to calibrate the egfp induction. Contrary to our expectations from micro-array analysis only the construct with the promoter from gene cluster 4925 responded to DBF, whereas the other two constructs did not show specific induction with DBF. The response from the bioreporters was subsequently tested for sensitivity to water stress, given that this could have an important impact in soils. Exposure to liquid cultures with decreasing water potential, achieved by NaCl or PEG addition to the growth media, showed that eGFP expression in RW1 from the promoter regions 4925 and 5102 was not directly influenced by water stress, but only through an overall reduction in growth rate. In contrast, expression of eGFP from the dxnAl or an uspA promoter was also directly dependent on the extent of water stress. The RW1 with the 4925 construct was subsequently used in soil microcosms to evaluate DBF bioavailability to the cells in presence or absence of native microbiota or other contaminated material. We found that RW1 could grow on DBF added to soil, but bioreporter expression suggested that competition with native microbiota for DBF intermediates may limit its ability to proliferate to a maximum. Chapter 5 describes the results from the experiments carried out to more specifically detect genes of RW1 that might be implicated in water stress resistance. Hereto we created transposon mutagenesis libraries in RW1, either with a classical mini-Tn5 or with a variant that would express egfp when the transposon would insert in a gene induced under water stress. Classical mutant libraries were screened by replica plating under high and low water stress conditions (achieved by adding NaCl to the agar medium). In addition, we screened for smaller microcolonies formed by mutants in agarose beads that could be analized with flow cytometry. A number of mutants impaired to grow on NaCl-supplemented media were recovered and the transposon insertion sites sequenced. In a second procedure we screened by flow cytometry for mutants with a higher eGFP production after exposure to growth medium with higher NaCl concentrations. Mutants from both libraries rarely overlapped. Discovered gene functions of the transposon insertions pointed to compatible solute synthesis (glutamate and proline), cell membrane synthesis and modification of cell membrane composition. The results obtained in the present study give us a more complete picture of the mechanisms of DBF degradation by S. wittichii RW1, how it reacts to different DBF availability and how the DBF catabolic activity may be affected by the conditions found in contaminated environments. - Sphingomonas wittichii est une alpha-protéobactérie gram-négative, capable de dégrader des composés xénobiotiques tels que le dibenzofurane (DBF), la dibenzo-p-dioxine, le carbazole, le 2-hydroxybiphényle ou les herbicides dérivés du nitro-diphényléther. Le métabolisme de la souche RW1 a fait l'objet d'études antérieures et un certain nombre de gènes impliqués dans la dégradation du DBF ont été caractérisés. Il est connu que RW1 possède une unique dioxygénase DBF initiale (codée par le gène dxnAl) qui catalyse la première étape de la voie de dégradation. Aucun des organismes connus pour être capables de dégrader le DBF n'a de dioxygénase similaire. L'enzyme la plus proche étant la DBF dioxygénase de Rhodococcus sp. avec 45% d'acides aminés conservés. Les gènes qui participent à la transformation du salicylate en métabolites intermédiaires du cycle de Krebs par la voie ort/io-cleavage ont aussi été identifiés. Outre ces informations lacunaires, il y a un manque de connaissances sur l'ensemble des gènes impliqués dans la dégradation du DBF par la souche RW1 ainsi que l'effet des stress environnementaux sur l'expression génétique globale, en présence du DBF. Une analyse globale est nécessaire, car elle peut aider à mieux comprendre le comportement de la souche dans les conditions de terrain et de proposer des améliorations pour l'utilisation de la bio-augmentation comme technique de bio-remédiation. Le chapitre 2 décrit les résultats de l'analyse du génome pour caractériser les gènes impliqués dans la dégradation du DBF par RW1. Une analyse de micro-arrays nous a permis de détecter des différences dans la transcription des gènes lorsque la souche RW1 a été exposée au DBF. L'analyse a été complétée par le criblage à ultra-haut débit de mutants qui n'étaient plus capables de croître avec le salicylate ou le DBF comme seule source de carbone. Certains des gènes de la voie ortho-cleavage, dont la DBF dioxygénase initiale, ont xî été induits 2 à 4 fois, en présence du DBF. Cependant, deux groupes de gènes, nommés 4925 et 5102 ont été induits jusqu'à 19 fois en réponse au DBF. Le cluster 4925 participe probablement dans une voie de meta-cleavage tandis que le cluster 5102 pourrait faire partie d'une voie du gentisate. Les trois voies, ortho-cleavage, meta-cleavage et la voie du gentisate semblent être activées en parallèle lorsque la souche RW1 est exposée au DBF, ce qui représente une redondance de voies pour la dégradation du DBF dans le génome de RW1. Le chapitre 3 se concentre sur l'exploitation des outils génétiques pour la construction de biorapporteurs de la dégradation du DBF par RW1. Un ensemble d'outils de base pour la manipulation génétique dans Sphingomonas wittichii RW1 a été testé et optimisé. Deux plasmides et mini-transposons ont été évalués pour leur capacité à être maintenu dans RW1 avec ou sans pression de sélection par des antibiotiques, et pour leur capacité à exprimer la protéine fluorescente verte (eGFP) dans la souche RW1. Les trois promoteurs des gènes Swit_4925, Swit_5102 et Swit_4897 (dxnAl), induits en réponse au DBF, ont ensuite été utilisés pour construire des biorapporteurs dans RW1. Le chapitre 4 décrit l'utilisation des souches biorapportrices construites pour l'analyse de l'expression des gènes de la voie de dégradation du DBF dans des microcosmes avec différents types de sols. Les souches biorapportrices ont d'abord été exposées à différentes sources de carbone en cultures liquides afin de calibrer l'induction de la eGFP. La construction avec le promoteur du gène 4925 a permis une réponse au DBF. Mais contrairement à nos attentes, basées sur les résultats de l'analyse des micro-arrays, les deux autres constructions n'ont pas montré d'induction spécifique au DBF. La réponse des biorapporteurs a ensuite été testée pour la sensibilité au stress hydrique, étant donné que cela pourrait avoir un impact important dans les microcosmes. La diminution du potentiel hydrique en culture liquide est obtenue par addition de NaCl ou de PEG au milieu de croissance. Nous avons montré que l'expression de la eGFP contrôlée par les promoteurs 4925 et 5102 n'était pas directement influencée par le stress hydrique, mais seulement par une réduction globale des taux de croissance. En revanche, l'expression de la eGFP dépendante des promoteurs dxnAl et uspA était aussi directement dépendante de l'ampleur du stress hydrique. La souche avec la construction 4925 a été utilisée par la suite dans des microcosmes avec différents types de sols pour évaluer la biodisponibilité du DBF en présence ou absence des microbes indigènes et d'autres composés contaminants. Nous avons constaté que RW1 pouvait se développer si le DBF a été ajouté au sol, mais l'expression de la eGFP par le biorapporteur suggère que la compétition avec la microbiota indigène pour les métabolites intermédiaires du DBF peut limiter sa capacité à proliférer de manière optimale. Le chapitre 5 décrit les résultats des expériences réalisées afin de détecter spécifiquement les gènes de RW1 qui pourraient être impliquées dans la résistance au stress hydrique. Ici on a crée des bibliothèques de mutants de RW1 par transposon, soit avec un mini-Tn5 classique ou avec une variante qui exprime la eGFP lorsque le transposon s'insère dans un gène induit par le stress hydrique. Les bibliothèques de mutants ont été criblées par la méthode classique de repiquage sur boîtes, dans des conditions de stress hydrique élevé (obtenu par l'addition de NaCl dans les boîtes). En outre, nous avons criblé des micro¬colonies dans des billes d'agarose qui ont pu être analysées par cytométrie de flux. Un certain nombre de mutants déficients à croître sur des milieux supplémentés avec du NaCl ont été isolés et les sites d'insertion du transposon séquencés. Dans une deuxième procédure nous avons criblé par cytométrie de flux des mutants avec une production de eGFP supérieure, après exposition à un milieu de croissance avec une concentration élevée de NaCl. Les mutants obtenus dans les deux bibliothèques n'étaient pas similaires. Les fonctions des gènes où se trouvent les insertions de transposons sont impliqués dans la synthèse de solutés compatibles (glutamate et de la proline), dans la synthèse de la membrane cellulaire et dans la modification de la composition de la membrane cellulaire. Les résultats obtenus dans la présente étude nous donnent une image plus complète des mécanismes de dégradation du DBF par S. wittichii RW1, comment cette souche réagit à la disponibilité du DBF et comment l'activité catabolique peut être affectée par les conditions rencontrées dans des environnements contaminés.
Resumo:
In the recent years, kernel methods have revealed very powerful tools in many application domains in general and in remote sensing image classification in particular. The special characteristics of remote sensing images (high dimension, few labeled samples and different noise sources) are efficiently dealt with kernel machines. In this paper, we propose the use of structured output learning to improve remote sensing image classification based on kernels. Structured output learning is concerned with the design of machine learning algorithms that not only implement input-output mapping, but also take into account the relations between output labels, thus generalizing unstructured kernel methods. We analyze the framework and introduce it to the remote sensing community. Output similarity is here encoded into SVM classifiers by modifying the model loss function and the kernel function either independently or jointly. Experiments on a very high resolution (VHR) image classification problem shows promising results and opens a wide field of research with structured output kernel methods.
Resumo:
Ultrasound segmentation is a challenging problem due to the inherent speckle and some artifacts like shadows, attenuation and signal dropout. Existing methods need to include strong priors like shape priors or analytical intensity models to succeed in the segmentation. However, such priors tend to limit these methods to a specific target or imaging settings, and they are not always applicable to pathological cases. This work introduces a semi-supervised segmentation framework for ultrasound imaging that alleviates the limitation of fully automatic segmentation, that is, it is applicable to any kind of target and imaging settings. Our methodology uses a graph of image patches to represent the ultrasound image and user-assisted initialization with labels, which acts as soft priors. The segmentation problem is formulated as a continuous minimum cut problem and solved with an efficient optimization algorithm. We validate our segmentation framework on clinical ultrasound imaging (prostate, fetus, and tumors of the liver and eye). We obtain high similarity agreement with the ground truth provided by medical expert delineations in all applications (94% DICE values in average) and the proposed algorithm performs favorably with the literature.
Resumo:
The expression of P2Z/P2X7 purinoceptor in different cell types is well established. This receptor is a member of the ionotropic P2X receptor family, which is composed by seven cloned receptor subtypes (P2X1 - P2X7). Interestingly, the P2Z/P2X7 has a unique feature of being linked to a non-selective pore which allows the passage of molecules up to 900 Da depending on the cell type. Early studies of P2Z/P2X7 purinoceptor were exclusively based on classical pharmacological studies but the recent tools of molecular biology have enriched the analysis of the receptor expression. The majority of assays and techniques chosen so far to study the expression of P2Z/P2X7 receptor explore directly or indirectly the effects of the opening of P2Z/P2X7 linked pore. In this review we describe the main techniques used to study the expression and functionality of P2Z/P2X7 receptor. Additionally, the increasing need and importance of a multifunctional analysis of P2Z/P2X7 expression based on flow cytometry technology is discussed, as well as the adoption of a more complete analysis of P2Z/P2X7 expression involving different techniques.
Resumo:
Monocytes are central mediators in the development of atherosclerotic plaques. They circulate in blood and eventually migrate into tissue including the vessel wall where they give rise to macrophages and dendritic cells. The existence of monocyte subsets with distinct roles in homeostasis and inflammation suggests specialization of function. These subsets are identified based on expression of the CD14 and CD16 markers. Routinely applicable protocols remain elusive, however. Here, we present an optimized four-color flow cytometry protocol for analysis of human blood monocyte subsets using a specific PE-Cy5-conjugated monoclonal antibody (mAb) to HLA-DR, a PE-Cy7-conjugated mAb to CD14, a FITC-conjugated mAb to CD16, and PE-conjugated mAbs to additional markers relevant to monocyte function. Classical CD14(+)CD16(-) monocytes (here termed "Mo1" subset) expressed high CCR2, CD36, CD64, and CD62L, but low CX(3)CR1, whereas "nonclassical" CD14(lo)CD16(+) monocytes (Mo3) essentially showed the inverse expression pattern. CD14(+)CD16(+) monocytes (Mo2) expressed high HLA-DR, CD36, and CD64. In patients with stable coronary artery disease (n = 13), classical monocytes were decreased, whereas "nonclassical" monocytes were increased 90% compared with healthy subjects with angiographically normal coronary arteries (n = 14). Classical monocytes from CAD patients expressed higher CX(3)CR1 and CCR2 than controls. Thus, stable CAD is associated with expansion of the nonclassical monocyte subset and increased expression of inflammatory markers on monocytes. Flow cytometric analysis of monocyte subsets and marker expression may provide valuable information on vascular inflammation. This may translate into the identification of monocyte subsets as selective therapeutic targets, thus avoiding adverse events associated with indiscriminate monocyte inhibition.
Resumo:
The tourism consumer’s purchase decision process is, to a great extent, conditioned by the image the tourist has of the different destinations that make up his or her choice set. In a highly competitive international tourist market, those responsible for destinations’ promotion and development policies seek differentiation strategies so that they may position the destinations in the most suitable market segments for their product in order to improve their attractiveness to visitors and increase or consolidate the economic benefits that tourism activity generates in their territory. To this end, the main objective we set ourselves in this paper is the empirical analysis of the factors that determine the image formation of Tarragona city as a cultural heritage destination. Without a doubt, UNESCO’s declaration of Tarragona’s artistic and monumental legacies as World Heritage site in the year 2000 meant important international recognition of the quality of the cultural and patrimonial elements offered by the city to the visitors who choose it as a tourist destination. It also represents a strategic opportunity to boost the city’s promotion of tourism and its consolidation as a unique destination given its cultural and patrimonial characteristics. Our work is based on the use of structured and unstructured techniques to identify the factors that determine Tarragona’s tourist destination image and that have a decisive influence on visitors’ process of choice of destination. In addition to being able to ascertain Tarragona’s global tourist image, we consider that the heterogeneity of its visitors requires a more detailed study that enables us to segment visitor typology. We consider that the information provided by these results may prove of great interest to those responsible for local tourism policy, both when designing products and when promoting the destination.
Resumo:
BACKGROUND: We examined body image perception and its association with reported weight-control behavior among adolescents in the Seychelles.METHODS: We conducted a school-based survey of 1432 students aging 11-17 years in the Seychelles. Perception of body image was assessed using both a closed-ended question (CEQ) and Stunkard's pictorial silhouettes (SPS). Voluntary attempts to change weight were also assessed.RESULTS: A substantial proportion of the overweight students did not consider themselves as overweight (SPS: 24%, CEQ: 34%), and a substantial proportion of the normal-weight students considered themselves as too thin (SPS: 29%, CEQ: 15%). Logistic regression analysis showed that students with an accurate weight perception were more likely to have appropriate weight-control behavior.CONCLUSIONS: We found that substantial proportions of students had an inaccurate perception of their weight and that weight perception was associated with weight-control behavior. These findings point to forces that can drive the upwards overweight trends.