981 resultados para Ice prevention
Resumo:
The paper reports the results of studies on ice storage and subsequent canning of mackerel (Rastrelliger kanagurta) and Sardines (Sardinella longiceps) and the effect of such storage on the quality of the canned product prepared out of them. The changes in the physical and chemical characteristics during ice storage are determined and correlated with the quality of the finished product.
Resumo:
The paper gives an account of the types of blackening associated with canned prawn in brine and their control. It was found that blackening caused by iron sulphide could be controlled by maintaining proper titratable acidity of fill brine in cans. The paper also elaborates on the factors responsible for or governing this critical titratable acidity. In regard to copper sulphide blackening, control was found to be difficult by maintaining the acidity or by additives such as EDTA when the copper content in the material went above the critical level.
Resumo:
Rate and pattern of spoilage of some of the economically important edible species of shell fishes Mytilus edulis (Mussel), Villorita cornucopia (Clam), Neptunus pelagicus (Crab) and Scylla serrata (Crab) have been discussed in this communication. Chemical indices used for objective evaluation of quality were water extractable nitrogen (WEN), non-protein nitrogen (NPN), free α-amino nitrogen (α - NH2 -N), glycogen, lactic acid and inorganic phosphorus in addition to the subjective tests. No significant difference in the spoilage pattern of the species during ice storage was observed and these species could be preserved in ice in organoleptic acceptable condition up to 8 days, 9 days, 8 days and 11 days respectively.
Resumo:
Changes in the major protein nitrogen fractions (sarcoplasmic, myofibrillar, stroma) have been studied in two species of prawns and in oil sardine held in ice storage. Myofibrillar proteins were observed to get denatured at a rapid rate as determined by salt extractability method. The sarcoplasmic proteins were not denatured to any considerable extent. With sardine however, the extraction of myofibrillar proteins was inhibited rather in the uniced condition itself presumably owing to the presence of free fatty acids.
Resumo:
Cultured silver carp (Hypopthalmichthys molitrix 800-1000 g) was stored in ice (fish to ice ratio 1:1) in a plywood box insulated with one inch thick expanded polystyrene and subjected to detailed examination of quality by chemical, microbiological and organoleptic evaluation at regular intervals to assess the storage life in good acceptable form. Alpha-amino nitrogen, non-protein nitrogen and pH values showed no positive correlation as spoilage index. Total volatile base nitrogen was not high at the end of the storage period although the fish became unacceptable during the period. There was steep decrease in total bacterial count during initial stages of storage and then increased steadily on further storage. Organoleptic evaluation of raw and cooked meat revealed that fish was in good acceptable form up to 14 days in ice.
Resumo:
Cultured Macrobrachium rosenbergii (Scampi; 30-40 g) in headless shell-on form was stored in ice (Prawn:ice=1:2) in a plywood box insulated with 2 cm thick expanded polystyrene and subjected to detailed examination of quality by chemical, microbiological and organoleptic evaluation at regular intervals to assess the storage life. The prime quality life of prawns in ice was found to be 8 days followed by a phase of lowered quality, but still acceptable till the end of 13 days.
Resumo:
The results are given of trials conducted to determine the effect on quality of holding fish (Lutjanus species) in chilled freshwater and also to compare the quality loss of fish stored in chilled seawater and chilled freshwater and in ice. No adverse effects were observed when storing in chilled freshwater apart from loss of external appearance after 6 days storage; taste panel tests showed acceptable conditions up to 15 days. Chilled seawater is unsuitable for storage as it spoils the intake of salt from the medium, making the flesh unpalatable.
Resumo:
Ice storage characteristics of fresh and brined fillets from fresh shark (Carcharias melanopterus) were studied in and out of contact with ice for more than two weeks. Changes occurring in biochemical constituents, physical qualities and bacterial counts of the fillets are reported. Shelf life of brined fillets out of contact with ice was considerably longer than that of control samples tinder similar conditions. Icing of shark fillets is suggested as a method for the removal of urea on a commercial scale.
Resumo:
Quality deterioration of seer held directly in contact with ice, in different forms, fillets and chunks, and of chunks held in ice but without direct contact, was studied for a period of 15 days. While the chunks held out of contact with ice were acceptable up to 13 days based on organoleptic evaluations, the chunks and fillets held in direct contact with ice were acceptable only up to 10 days. The order of preference of the samples at any interval of ice storage was chunks held out of contact with ice>chunks held directly in ice>fillets held directly in ice. The changes in the chemical quality of these samples were also in the same order, the deterioration being maximum in fillets and least in chunks kept out of contact with ice.
Resumo:
Perch (Pagrus spinifer), one of the most abundantly available fishes of Gujarat coast, was subjected to a detailed study for assessing its storage life in ice and amenability of the iced fish for canning. Changes in the salt soluble nitrogenous material and myosin content of the iced fish showed good correlation with the changes in the organoleptic and physical qualities. The fish was found to have a storage life of 9 days in ice and samples stored up to 7 days were suitable for canning.
Resumo:
The changes in the major protein nitrogen fractions of two commercially important fishes of Indian waters, viz., mackerel (Rastrelliger kanagurta) and lactarius (Lactarius lactarius), during storage in ice are reported. The significance of the findings is discussed in comparison with the results of a similar study on two species of marine prawns and oil sardine, reported earlier.
Resumo:
The native flora of oil sardine and mackerel consisting of Pseudomonas spp; Moraxella spp., Acinetobacter spp. and Vibrio spp. underwent significant changes during ice storage. At the time of spoilage, Pseudomonas spp. were predominant. CTC treatment significantly reduced the Pseudomonas spp. in the initial stages of storage; but later Pseudomonas spp. reasserted and constituted the bulk of the spoilage flora. In prawn, the native flora was comprised of Pseudomonas spp., Acinetobacter spp., Moraxella spp. and Vibrio spp. At the time of spoilage a heterogeneous flora, consisting of Pseudomonas spp; Moraxella spp. and Acinetobacter spp. predominated. CTC treatment significantly changed the flora of prawns. During spoilage, Pseudomonas predominated in CTC treated prawns.
Resumo:
The native flora of fresh oil sardine and mackerel consisted mainly of Pseudomonas spp., Moraxella spp., Acinetobacter spp. and Vibrio spp. During spoilage in ice, nearly 75% of their bacterial flora belonged to Pseudomonas spp. alone. But Na sub(2) EDTA treatment reduced the proportion of Pseudomonas spp. considerably and the major bacterial groups at the time of spoilage were Moraxella spp. and Acinetobacter spp. In the case of fresh prawn, the native flora was constituted by Pseudomonas spp., Moraxella spp., Acinetobacter spp. and Vibrio spp. At the time of spoilage of prawn in ice, Moraxella spp. and Acinetobacter spp. predominated, together constituting 74% of the total population. Na sub(2) EDTA treatment did not alter significantly the spoilage flora of prawns. Moraxella spp. and Acinetobacter spp. accounted for 86% of the spoilage flora in ice storage of Na sub(2) EDTA treated prawns.
Resumo:
Studies were carried out on the effect of ice storage on the composition of kati (Pellona sp.). On the basis of biochemical, bacteriological and organoleptic valuations, it was observed that kati can be stored in ice for a period of 9 days without appreciable loss in overall quality.