421 resultados para Hydroxymethyl Substituents
Resumo:
Es wurden drei Ansätze zur Totalsynthese von Fungerin verfolgt, dessen charakteristisches Strukturmerkmal ein N-methylierter in 4,5-Position disubstituierter Imidazolkern ist. Zunächst wurde ein Syntheseweg eingeschlagen, bei dem die Bildung des Imidazolrings nach Marckwald erfolgte. Das hierfür benötigte α-Aminoketon wurde in einer konvergenten Synthesesequenz aus zwei Bausteinen zusammengesetzt. Die anschließende Ringschlussreaktion mit Kaliumthiocyanat lieferte ein Thioimidazolderivat, welches erfolgreich zum angestrebten Zielmolekül entschwefelt werden konnte. Die Gesamtausbeute betrug 8,1 % über sieben Stufen. In einem zweiten Syntheseweg wurde ein in 4- und 5-Position orthogonal geschütztes Imidazolderivat synthetisiert, um eine höhere Flexibilität bei geplanten Strukturvariationen der Seitenketten zu erreichen. Nach sequentieller Entschützung und Funktionalisierung sollten verschiedene Substituenten angebracht werden. Die Bildung des Imidazolkerns erfolge über eine Kondensationsreaktion von Methylamin mit einem N-formylierten α-Aminoketon, welches über eine Claisen-Kondensation erhalten wurde. Die zur Einführung der C5-Seitenkette geplante Grignard- bzw. Schlosser-Fouquet-Kupplung erwies sich als nicht zuverlässig reproduzierbar. In der Folge wurde in einer dritten Synthesesequenz ein Imidazolderivat mit zwei unterschiedlichen Anknüpfungspunkten in 4- und 5-Position synthetisiert. Dadurch war es möglich über Julia-Kocienski Olefinierungen verschiedene Seitenketten in 5-Position anzubringen. In 4-Position erfolgte die Einführung über Heck-Kupplungen. Insgesamt konnten so, neben Fungerin, noch sieben weitere Fungerinderivate erhalten werden.
Resumo:
During the thesis period a new class of atropisomeric xanthine derivatives has been studied. We decided to focus our attention on these purine bases because of their various biological activities, that could play an important role in the discovery of new bioactive atropisomers. The synthesized compounds bear an Aryl-N chiral axis in position 1 of the xanthine scaffold, around which the rotation is prevented by the presence of bulky ortho substituents. Through a retro synthetic analysis we synthesized three atropisomeric structures bearing in position 1 of the purine scaffold respectively an o-tolyl, o-nitrophenyl and a 1-naphthyl group. The conformational studies by DFT simulations showed that the interconversion energy barrier between the two available skewed conformations is higher enough to obtain thermally stable atropisomers. After the separation of the atropisomers, the experimental energy of interconversion was investigated by means of kinetic studies following the thermal racemization process using an enantioselective HPLC column. The absolute configuration of each atropisomer was assigned by experimental ECD analysis and TD-DFT simulations of the ECD spectra.
Resumo:
In this work, we present the first regio- and enantioselective organocatalytic nucleophilic dearomatization of activated N-alkyl pyridinium salts. In particular, N-benzyl pyridinium bromides bearing electron-withdrawing substituents at the C3 position of the pyridine ring were chosen as substrates. These compounds were easily obtained through an alkylation reaction between benzyl bromides and the corresponding 3-substituted pyridines. Then, a wide range of nucleophiles and organocatalysts was tested, providing the best results when indole, a thiourea derived from quinidine and 1-benzyl-3-nitropyridinum bromide were employed as the nucleophile, the catalyst and the pyridinium salt, respectively. Subsequently, the reaction conditions were optimised evaluating different bases, solvents, N-benzylic protecting groups, molar concentrations and temperatures. With the optimized condition in hand, the scope of the reaction with different substituted indoles was explored, affording the corresponding 1,4-dihydropyridines in good yields, regio- and enantio-selectivities. In addition, several experiments were carried out in order to understand the mechanism of the reaction, showing an unusual pathway involving a covalently bound intermediate formed by addition of the catalyst to the pyridine unit.
Resumo:
This work is based on the study of new synthetic paths to obtain thioimidate N-oxides (TINOs) from D-ribose and to study their reactivity with the purpose to obtain ketonitrones. TINOs, aren’t well known molecules, but these enantiomerically pure backbones could be valuable intermediates in the synthesis of novel ketonitrones which are key intermediates in the synthesis of iminosugars. TINOs were discovered from the study of glucoraphanin, a particular glucosinolate, that unexpectedly cyclized into a TINO after desulfatation, by a spontaneous intramolecular Michael addition. The first part of this work was to synthetize the TINO 3 from D-ribose 1. The key step was the desilylative cyclisation of a suitably functionalized thiohydroximate 2. Based on precedent work developed in the laboratory, we could obtain the thiohydroximate from D-ribose. We then focused our studies on the cyclisation step trying to find the suitable substituents that could give the TINO in good yield by desilylative cyclisation. The second part of the project is to obtain ketonitrones 4 by palladiumcatalyzed coupling reaction.
Resumo:
Chemical investigation of the stems of Seseli praecox (Gamisans) Gamisans, an endemic Apiaceae from Sardinia, afforded an isopropenylated chromone (5-hydroxy-6-(2-Z-butenyl-3-hydroxymethyl)-7-methoxy-2-methylchromone), along with four known linear furocoumarins and their natural precursor. For biological characterization the new compound was screened against four cancer cell lines in vitro and showed differential microM antiproliferative effects between suspension and adherent cells.
Resumo:
Two novel bicyclo-T nucleosides carrying a hydroxyl or a carboxymethyl substituent in C(6')-[alpha]-position were prepared and incorporated into oligodeoxynucleotides. During oligonucleotide deprotection the carboxymethyl substituent was converted into different amide substituents in a parallel way. Tm-measurements showed no dramatic differences in both, thermal affinity and mismatch discrimination, compared to unmodified oligonucleotides. The post-synthetic modification of the carboxymethyl substituent allows in principle for a parallel preparation of a library of oligonucleotides carrying diverse substituents at C(6'). In addition, functional groups can be placed into unique positions in a DNA double helix.
Resumo:
The thesis presented here describes methodologies to produce pendant group functionalized polyesters from amido-functionalized α-hydroxy acids. The synthetic methods used to produce the functionalized α-hydroxy acids are compatible with a wide array of functional groups, making this technique highly versatile. The synthesis of functionalized polyesters was investigated to develop polymers with properties that may improve the capabilities of existing biodegradable polyesters for applications in controlled release pharmaceuticals. Chemically modified a-hydroxy acids were synthesized by reacting glyoxylic acid with a primary or secondary amide. To demonstrate the utility of this reaction, fourstructurally dissimilar amide substituents were examined including 2-pyrrolidione, benzamide, acetamide and acrylamide. The reaction is synthetically simple, provides high yields and is uniquely flexible, functionalized monomer. The compatibility of this procedure with the collection of functional groups mentioned circumvents the need for syntheses. The amido-functionalized monomers were polymerized by two different techniques: melt polycondensation and solution polymerization. Melt polycondensation was conducted by heating the monomer past its melting temperature under reduced pressure. Oligomeric functionalized polyesters (= 800 g/mol) with low PDIs (= 1.05) were obtained by melt polycondensation. Melt polycondensation was not compatible with all of the synthesized monomers. Two of the monomers (containing benzamide and acrylamide functionalities) degraded before the polycondensation reaction occurred. Thermal gravimetric analysis confirmed that a process other than polyesterification was occurring, indicating that some amido-functionalized α-hydroxy acids cannot be synthesized in the melt.Solution polymerization was conducted to polymerize functionalized α-hydroxy acids that were incompatible with melt polycondensation. Several modified Steglich polyesterifications were tested including p-toluenesulfonic acid mediated and scandium (III) triflate catalyzed. Only oligomeric functionalized polyesters were formed bythis method. A number of possible side reactions including the formation of an N-acylurea and a cyclic polymer ring were possible. The utility of this procedure appears to be limited due to the complexity of the reaction and its inability to produce high molecular weight polymer.
Resumo:
ABSTRACT FOR PART I: PHOSPHA-MICHAEL ADDITIONS TO ACTIVATED INTERNAL ALKENES: STERIC AND ELECTRONIC EFFECTS A method for the phospha-Michael addition of bis(4-methyl)phenyl phosphine oxide to activated internal alkenes has been developed. Michael acceptors including cinnamates, crotonates, chalcones, and internal alkenes containing multiple activating groups were all successfully utilized in this reaction. The reaction was fairly tolerant of electron-donating and electron-withdrawing substituents on the Michael acceptor, and moderate to excellent yields (49-96%) of the adducts were isolated. When steric bulk was increased by a second substituent on the -position of the Michael-acceptor the reaction was suppressed. This was usually overcome by adding a second activating substituent to the -position. ABSTRACT FOR PART II: MICROWAVE-ASSISTED ARYLGOLD BOND FORMATION A microwave-assisted method was developed for the formation of arylgold complexes containing (2-Biphenyl)di-tert-butylphosphine (JohnPhos) as the supporting phosphine ligand. Arylboronic acids with increasingly bulky aromatic groups were screened to determine the steric limitations of the reaction. Arylgold complexes (JohnPhos)Au(p-methoxyphenyl), (JohnPhos)Au(2,4,6-trimethylphenyl), and (JohnPhos)Au(4-bromo-10-anthracene) were all synthesized by microwave irradiation at 70ºC in the presence of Cs2CO3 in either THF or iPrOH. Reactions performed with arylboronic acids containing unhindered ortho positions were carried out in THF. Arylboronic acids with substituents on the ortho position required iPrOH as the reaction solvent. Arylboronic acids with extreme steric hindrance on the ortho position of the aryl substituent, 2,4,6-triisopropylpphenylboronic acid, were unreactive. It was determined that increasing the irradiation temperature increased the formation of side products, therefore to promote conversion to the arylgold complex the duration of the reaction time was increased while maintaining a temperature of 70ºC. Arylgold complexes (JohnPhos)Au(p-methoxyphenyl), (JohnPhos)Au(2,4,6-trimethylphenyl), and (JohnPhos)Au(4-bromo-10-anthracene) were synthesized with moderate yields (40-69%).
Resumo:
The synthesis and biological evaluation of four peptidomimetic analogs of somatostatin based on a constrained Trp residue, 3-amino-indolo[2,3-c]azepin-2-one (Aia), are reported. It is shown that dipeptidomimetics with a D-Aia-Lys sequence, functionalized with N- and C-terminal aromatic substituents, display a good selectivity for both sst4 and sst5. This study allowed us to identify a new highly potent sst5 agonist with good selectivity over the other receptors, except versus sst4.
Resumo:
Presented here, is the work done with a series of binucleating ligands based on phosphine and phosphine oxide appended p-hydroquinones and their reactions towards various metals sources. The long term goal of the project was to produce coordination polymers that would have novel electronic, magnetic, and optical properties which would be of use in the field of molecular electronics. Binucleating ligands contained a p-hydroquinone motif in which various phosphine- and phosphine oxide substituents have been placed in the ortho position relative to each of the hydroxy position were synthesized. A previously published synthetic method for such lugands utilized n-BuLi to form a phenyl lithium intermediate which was quenched with chlorodiphenylphosphine. This technique was also used to produce a ligand with diisopropylphosphine groups. Phosphine ligands, containing the same structural motif, were also generated using LDA as the lithiating agent. This technique was found to be higher yielding. Phosphine chalcogenide ligands were accessed by further oxidizing the low valent phosphorous centers with either hydrogen peroxide or with elemental sulfur. These ligands were characterized using multinuclear NMR, low and high resolution mass spectroscopy, FTIR, and single crystal X-ray diffraction. Their electrochemical properties were explored with cyclic voltammetry. The phosphine appended ligands were used in the synthesis of a several bimetallic complexes. It was found that the ligands readily reacted with NiCp2 and NiCp*2, displacing one of the cyclopentadiene (Cp) or pentamethylcyclopentadiene (Cp*) rings. A cyclopentadiene complexes, containing diisopropylphine, was readily oxidized by[FeCp2]PF6 to give a NMR silent mixed valence complex. Cyclic voltammetry of these complexes showed a number of reversible waves with a large potential separation. The mixed valence compounds also showed a large absorbance band in the NIR region which was assigned to be an intervalence charge transfer. The cyclic voltammetry and NIR spectroscopy suggest that these systems are very capable of efficient metal-to-metal charge transfer. These complexes were characterized by multinuclear NMR, single crystal X-ray diffraction, UV/VIS-NIR spectroscopy and elemental analysis. The phosphine oxide ligands were reacted with a variety of different metal sources but limited success was gained in obtaining single crystals, allowing structural characterization of these compounds. Single crystals were obtained from products generated by reacting the diphenylphosphine oxide ligand with (Bipy)Cu(NO3)2 and Cu(NO3)2. In all cases the ligand had been further oxidized to a 2,5-dihydroxy-1,4-benzoquinone motif. In the reaction between the diphenylphosphine oxide ligand and (Bipy)Cu(NO3)2 it was found that the phosphine oxide moiety was involved with intermolecular coordination leading to the formation of a one-dimensional polymer composed of a series of bimetallic complexes tethered together. When NaSbF6 was present in the reaction with (Bipy)Cu(NO3)2 a unique tetrametallic complex was formed. Here the phospine oxide moiety was oriented so that two bimetallic complexes were bound together. If only Cu(NO3)2 was present, a two-dimensional polymeric sheet was formed where the ligand was present in two different coordination modes. The electronic properties of these complexes remained to be assessed.
Resumo:
The synthesis, biological evaluation, and conformational analysis of 4-amino-indolo[2,3-c]azepin-3-one (Aia)-containing SRIF mimetics are reported. Different subtype selectivities are observed depending on the N- and C-terminal substituents of the D-Aia-Lys dipeptide mimetic. An sst(5)-selective analogue with subnanomolar binding affinity was obtained that is the most potent agonist reported to date. A nonselective mimetic with high potency was also identified. This study allows a better definition of the bioactive conformation of the essential D-Trp side chain in the somatostatin pharmacophore.
Resumo:
BACKGROUND: Fesoterodine is a new antimuscarinic agent developed for the treatment of overactive bladder. Fesoterodine itself is inactive and is rapidly and extensively converted by ubiquitous esterases to its principal active moiety, 5-hydroxymethyl tolterodine (5-HMT). 5-HMT is formed via biotransformation of both fesoterodine and tolterodine, albeit by different metabolising enzymes, viz. esterases and CYP2D6 respectively. Tolterodine is a potent muscarinic receptor antagonist and has been used for the treatment of overactive bladder for over ten years. The objective of this study was to establish the pharmacokinetic profile of fesoterodine and to highlight ist potential pharmacokinetic advantages over tolterodine. DESIGN: Single-centre, open-label, randomised, 4-way crossover study in a total of 24 healthy male volunteers. Single oral doses of 4, 8, or 12 mg fesoterodine were administered after an overnight fast. In addition, the 8 mg dose was also administered after a standard high-fat and high-calorie breakfast. Blood and urine samples for the analysis of 5-HMT were collected before and multiple times after drug administration for pharmacokinetic analysis. RESULTS: The mean peak plasma concentration (Cmax) of 5-HMT and the mean area under the time versus concentration curve (AUC) increased proportionally with the fesoterodine dose. These two parameters were some 2-fold higher in CYP2D6 poor metabolisers, whereas the time to peak plasma concentration (tmax) and half life (t1/2) were not influenced by the dose or the CYP2D6 metaboliser status. If fesoterodine was taken following a high-fat breakfast, we observed small increases in Cmax and AUC. In spite of these modest genetic influences and food effects on the pharmacokinetics of fesoterodine, the overall interindividual variability in Cmax levels was relatively little compared to previously published reports using tolterodine. CONCLUSIONS: Due to the esterase-mediated cytochrome P450-independent formation of 5-HMT and involvement of multiple metabolic and renal excretion pathways in the elimination of 5-HMT, the effects of patient-intrinsic and -extrinsic factors on the pharmacokinetics of fesoterodine are only modest, with some 2-fold higher 5-HMT exposure. Therefore, in contrast to tolterodine, no reduction of fesoterodine dosage is required under conditions of reduced elimination. In most cases of drug interaction or renal/hepatic impairment, the fesoterodine dose may be increased to 8 mg/day based on individual patients' response, or patients may be required to remain at the initial recommended dose of 4 mg/day.
Resumo:
A regioselective synthesis of unsymmetrical biaryls with electron withdrawing or donating substituents is described and illustrated by carbanion-induced ring transfonnation of 6-aryl-a-pyrones with methoxyacetone in excellent yield. Our methodology is an alternative to classical organometal-catalyzed aryl-aryl coupling reactions and can be applied to the synthesis of functionally demanding naphthyl biaryls for the development of new ligands for asymetric synthesis
Resumo:
A novel and efficient regioselective synthesis of various arylated highly congested 7-aryl-5-methylsulfanylindan-4-carbonitriles (3a-(), methyl 7-aryl-5-methylsulfanylindan-4-carboxylates (lOa-e) and 7-aryl-5-methylsulfanylindan-4-carboxylic acids (lla-e) through base-catalyzed reaction of 6-aryl-4-methylsulfanyl-2-oxo-2H-pyran-3-carbonitriles (la-() and methyl 6-aryl-4-methylsulfanyl-2-oxo-2Hpyran-3-carboxylates (9a-e) by cyclopentanone (2) has been delineated. The synthetic potential of 2-pyranone was explored further to generate mo'iecular diversity using 6-aryl-4-secamino- 2-oxo-2H-pyran-3-carbonitriles (7a-h), 5,6-diaryl-4-methylsulfanyl-2-oxo2H-pyran-3-carbonitriles (Sa,b) and methyl 5,6-diaryl-4- methylsulfanyl-2-oxo-2H-pyran-3-carboxylates (12a,b) as precursors for the ring transformation by cyclopentanone to assess the effects of substituents on the course of the reaction to obtain highly congested indans, 6,7diaryl-5-methylsulfanylindan-4-carbonitriles (6a,b), 7-aryl-5-(piperidin-I-yl)indancarbonitriles (8a-h) and methyl 6,7-4- diaryl-5-methylsulfanylindan-4-carboxylate 13a,b).
Resumo:
An expeditious synthesis of highly substituted benzenes with electron withdrawing or donating substituents is described and illustrated by carbanion-induced ring transformation of 2H-pyran-2-one with malononitrile in excellent yield. The novelty of the reaction lies in the creation of an aromatic ring at room temperature from six membered-lactones under mild reaction conditions.