891 resultados para Hydro-electricity. eng
Resumo:
This paper proposes a transmission and wheeling pricing method based on the monetary flow tracing along power flow paths: the monetary flow-monetary path method. Active and reactive power flows are converted into monetary flows by using nodal prices. The method introduces a uniform measurement for transmission service usages by active and reactive powers. Because monetary flows are related to the nodal prices, the impacts of generators and loads on operation constraints and the interactive impacts between active and reactive powers can be considered. Total transmission service cost is separated into more practical line-related costs and system-wide cost, and can be flexibly distributed between generators and loads. The method is able to reconcile transmission service cost fairly and to optimize transmission system operation and development. The case study on the IEEE 30 bus test system shows that the proposed pricing method is effective in creating economic signals towards the efficient use and operation of the transmission system. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Electricity market price forecast is a changeling yet very important task for electricity market managers and participants. Due to the complexity and uncertainties in the power grid, electricity prices are highly volatile and normally carry with spikes. which may be (ens or even hundreds of times higher than the normal price. Such electricity spikes are very difficult to be predicted. So far. most of the research on electricity price forecast is based on the normal range electricity prices. This paper proposes a data mining based electricity price forecast framework, which can predict the normal price as well as the price spikes. The normal price can be, predicted by a previously proposed wavelet and neural network based forecast model, while the spikes are forecasted based on a data mining approach. This paper focuses on the spike prediction and explores the reasons for price spikes based on the measurement of a proposed composite supply-demand balance index (SDI) and relative demand index (RDI). These indices are able to reflect the relationship among electricity demand, electricity supply and electricity reserve capacity. The proposed model is based on a mining database including market clearing price, trading hour. electricity), demand, electricity supply and reserve. Bayesian classification and similarity searching techniques are used to mine the database to find out the internal relationships between electricity price spikes and these proposed. The mining results are used to form the price spike forecast model. This proposed model is able to generate forecasted price spike, level of spike and associated forecast confidence level. The model is tested with the Queensland electricity market data with promising results. Crown Copyright (C) 2004 Published by Elsevier B.V. All rights reserved.
Resumo:
The recent deregulation in electricity markets worldwide has heightened the importance of risk management in energy markets. Assessing Value-at-Risk (VaR) in electricity markets is arguably more difficult than in traditional financial markets because the distinctive features of the former result in a highly unusual distribution of returns-electricity returns are highly volatile, display seasonalities in both their mean and volatility, exhibit leverage effects and clustering in volatility, and feature extreme levels of skewness and kurtosis. With electricity applications in mind, this paper proposes a model that accommodates autoregression and weekly seasonals in both the conditional mean and conditional volatility of returns, as well as leverage effects via an EGARCH specification. In addition, extreme value theory (EVT) is adopted to explicitly model the tails of the return distribution. Compared to a number of other parametric models and simple historical simulation based approaches, the proposed EVT-based model performs well in forecasting out-of-sample VaR. In addition, statistical tests show that the proposed model provides appropriate interval coverage in both unconditional and, more importantly, conditional contexts. Overall, the results are encouraging in suggesting that the proposed EVT-based model is a useful technique in forecasting VaR in electricity markets. (c) 2005 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
Resumo:
Like any other natural resources, hydro resources that are capable of generating electricity at cheaper cost give rise to economic rent. Nepal possesses huge amount of such cheaper hydro resources which is far in excess of the domestic demand. The existing rents levied by the governments are not found to address the potential value of resources. In this study hydro rent is calculated for two types of hydropower projects: (i) domestic demand oriented project and (ii) large and export oriented project. In doing so, the study uses the concept of hydro rent as a measure of cost savings achievable by the use of hydro resources over the least cost alternatives. The WASP-III+ optimisation software developed by IAEA has been used to derive two least cost generation expansion plans i.e. one with and the other without the nominated hydro resource. The difference in the costs of two plans gives the rent of the hydro resource.
Resumo:
Market administrators hold the vital role of maintaining sufficient generation capacity in their respective electricity market. However without the jurisdiction to dictate the generator types, locations and timing of new generation, the reliability of the system may be compromised by delayed entry of new generation. This paper illustrates a new generation investment methodology that can effectively present expected returns from the pool market; while concurrently searching for the type and placement of a new generator to fulfil system reliability requirements.
Resumo:
A new methodology is proposed for the analysis of generation capacity investment in a deregulated market environment. This methodology proposes to make the investment appraisal using a probabilistic framework. The probabilistic production simulation (PPC) algorithm is used to compute the expected energy generated, taking into account system load variations and plant forced outage rates, while the Monte Carlo approach has been applied to model the electricity price variability seen in a realistic network. The model is able to capture the price and hence the profitability uncertainties for generator companies. Seasonal variation in the electricity prices and the system demand are independently modeled. The method is validated on IEEE RTS system, augmented with realistic market and plant data, by using it to compare the financial viability of several generator investments applying either conventional or directly connected generator (powerformer) technologies. The significance of the results is assessed using several financial risk measures.
Resumo:
Non-technical losses (NTL) identification and prediction are important tasks for many utilities. Data from customer information system (CIS) can be used for NTL analysis. However, in order to accurately and efficiently perform NTL analysis, the original data from CIS need to be pre-processed before any detailed NTL analysis can be carried out. In this paper, we propose a feature selection based method for CIS data pre-processing in order to extract the most relevant information for further analysis such as clustering and classifications. By removing irrelevant and redundant features, feature selection is an essential step in data mining process in finding optimal subset of features to improve the quality of result by giving faster time processing, higher accuracy and simpler results with fewer features. Detailed feature selection analysis is presented in the paper. Both time-domain and load shape data are compared based on the accuracy, consistency and statistical dependencies between features.
Resumo:
In deregulated electricity market, modeling and forecasting the spot price present a number of challenges. By applying wavelet and support vector machine techniques, a new time series model for short term electricity price forecasting has been developed in this paper. The model employs both historical price and other important information, such as load capacity and weather (temperature), to forecast the price of one or more time steps ahead. The developed model has been evaluated with the actual data from Australian National Electricity Market. The simulation results demonstrated that the forecast model is capable of forecasting the electricity price with a reasonable forecasting accuracy.
Resumo:
Ancillary service plays a key role in maintaining operation security of the power system in a competitive electricity market. The spinning reserve is one of the most important ancillary services that should be provided effectively. This paper presents the design of an integrated market for energy and spinning reserve service with particular emphasis on coordinated dispatch of bulk power and spinning reserve services. A new market dispatching mechanism has been developed to minimize the cost of service while maintaining system security. Genetic algorithms (GA) are used for finding the global optimal solutions for this dispatch problem. Case studies and corresponding analyses have been carried out to demonstrate and discuss the efficiency and usefulness of the proposed method.