955 resultados para Human androgen receptor gene
Resumo:
The 4-hydroxy metabolite of 17 beta-estradiol (E2) has been implicated in the carcinogenicity of this hormone. Previous studies showed that aryl hydrocarbon-receptor agonists induced a cytochrome P450 that catalyzed the 4-hydroxylation of E2. This activity was associated with human P450 1B1. To determine the relationship of the human P450 1B1 gene product and E2 4-hydroxylation, the protein was expressed in Saccharomyces cerevisiae. Microsomes from the transformed yeast catalyzed the 4- and 2-hydroxylation of E2 with Km values of 0.71 and 0.78 microM and turnover numbers of 1.39 and 0.27 nmol product min-1.nmol P450-1, respectively. Treatment of MCF-7 human breast cancer cells with the aryl hydrocarbon-receptor ligand indolo[3,2-b]carbazole resulted in a concentration-dependent increase in P450 1B1 and P450 1A1 mRNA levels, and caused increased rates of 2-, 4-, 6 alpha-, and 15 alpha-hydroxylation of E2. At an E2 concentration of 10 nM, the increased rates of 2- and 4-hydroxylation were approximately equal, emphasizing the significance of the low Km P450 1B1-component of E2 metabolism. These studies demonstrate that human P450 1B1 is a catalytically efficient E2 4-hydroxylase that is likely to participate in endocrine regulation and the toxicity of estrogens.
Resumo:
The human Rb2/p130 gene shares many structural and functional features with the retinoblastoma gene and the retinoblastoma-related p107 gene. In the present study, we have cloned and partially sequenced the gene coding for the Rb2/p130 protein from human genomic libraries. The complete intron-exon organization of this gene has been elucidated. The gene contains 22 exons spanning over 50 kb of genomic DNA. The length of individual exons ranges from 65 to 1517 bp. The largest intron spans over 9 kb, and the smallest has only 82 bp. The 5' flanking region revealed a structural organization characteristic of promoters of "housekeeping" and growth control-related genes. A typical TATA or CAAT box is not present, but there are several GC boxes and potential binding sites for numerous transcription factors. This study provides the molecular basis for understanding the transcriptional control of the Rb2/p130 gene and for implementing a comprehensive Rb2/p130 mutation screen using genomic DNA as a template.
Resumo:
Transgenic mice carrying heterologous genes directed by a 670-bp segment of the regulatory sequence from the human transferrin (TF) gene demonstrated high expression in brain. Mice carrying the chimeric 0.67kbTF-CAT gene expressed TF-CAT in neurons and glial cells of the nucleus basalis, the cerebrum, corpus callosum, cerebellum, and hippocampus. In brains from two independent TF-CAT transgenic founder lines, copy number of TF-CAT mRNA exceeded the number of mRNA transcripts encoding either mouse endogenous transferrin or mouse endogenous amyloid precursor protein. In two transgenic founder lines, the chloramphenicol acetyltransferase (CAT) protein synthesized from the TF-CAT mRNA was estimated to be 0.10-0.15% of the total soluble proteins of the brain. High expression observed in brain indicates that the 0.67kbTF promoter is a promising director of brain expression of heterologous genes. Therefore, the promoter has been used to express the three common human apolipoprotein E (apoE) alleles in transgenic mouse brains. The apoE alleles have been implicated in the expression of Alzheimer disease, and the human apoE isoforms are reported to interact with different affinities to the brain beta-amyloid and tau protein in vitro. Results of this study demonstrate high expression and production of human apoE proteins in transgenic mouse brains. The model may be used to characterize the interaction of human apoE isoforms with other brain proteins and provide information helpful in designing therapeutic strategies for Alzheimer disease.
Resumo:
The structure and function relationship between melanocortin-2 receptor (MC2R) and ACTH are the most complicated in melanocortin receptor gene family. A comparative study on the activation of human and rainbow trout MC2R will provide a useful model system for understanding how ACTH emerged as the sole ligand for the MC2R of bony vertebrates. This dissertation will discuss how studies utilizing analogs of hACTH(1-24) have revealed two critical amino acid motifs in this ligand (HFRW and KKRRP) which are required for the activation of MC2R. In addition, the KKRRP motif functioned as the unique binding site for MC2R that directly contributes to the ligand selectivity feature, as revealed from studies on an ACTH antagonist which exclusively targets MC2R. Finally, based on our model for the interaction of ACTH and MC2R, the amino acid residues within TM4, EC2, and TM5 domains responsible for ACTH ligand selectivity will be evaluated by site-directed mutagenesis studies.
Resumo:
The dopamine D4 receptor gene contains a polymorphic sequence consisting of a variable number of 48-base-pair (bp) repeats, and there have been a number of reports that this polymorphism is associated with variation in novelty seeking or in substance abuse and addictive behaviors. In this study we have assessed the linkage and association of DRD4 genotype with novelty seeking, alcohol use, and smoking in a sample of 377 dizygotic twin pairs and 15 single twins recruited from the Australian Twin Registry (ATR). We found no evidence of linkage or association of the DRD4 locus with any of the phenotypes. We made use of repeated measures for some phenotypes to increase power by multivariate genetic analysis, but allelic effects were still non-significant. Specifically, it has been suggested that the DRD4 7-repeat allele is associated with increased novelty seeking in males but we found no evidence for this, despite considerable power to do so. We conclude that DRD4 variation does not have an effect on use of alcohol and the problems that arise from it, on smoking, or on novelty seeking behavior. (C) 2003 Wiley-Liss, Inc.
Resumo:
Migraine is a painful and debilitating disorder with a significant genetic component. Steroid hormones, in particular estrogen, have long been considered to play a role in migraine, as variations in hormone levels are associated with migraine onset in many sufferers of the disorder. Steroid hormones mediate their activity via hormone receptors, which have a wide tissue distribution. Estrogen receptors have been localized to the brain in regions considered to be involved in migraine pathogenesis. Hence it is possible that genetic variation in the estrogen receptor gene may play a role in migraine susceptibility. This study thus examined the estrogen receptor 1 (ESRalpha) gene for a potential role in migraine pathogenesis and susceptibility. A population-based cohort of 224 migraine sufferers and 224 matched controls were genotyped for the G594A polymorphism located in exon 8 of the ESR1 gene. Statistical analysis indicated a significant difference between migraineurs and non-migraineurs in both the allele frequencies (P=0.003) and genotype distributions (P=0.008) in this sample. An independent follow-up study was then undertaken using this marker in an additional population-based cohort of 260 migraine sufferers and 260 matched controls. This resulted in a significant association between the two groups with regard to allele frequencies (P=8x10(-6)) and genotype distributions (P=4x10(-5)). Our findings support the hypothesis that genetic variation in hormone receptors, in particular the ESR1 gene, may play a role in migraine.
Resumo:
Peroxisome proliferator-activated receptors are ligand-activated transcription factors with a potential role in cancer. We investigated peroxisome proliferator-activated receptor alpha expression in breast cancer cell lines and showed a relationship between mean peroxisome proliferator-activated receptor alpha and estrogen receptor alpha mRNA levels in estrogen receptor alpha positive breast cancer cells. Transfection of estrogen receptor alpha into the estrogen receptor alpha negative cell line, MDA-MB-231 decreased peroxisome proliferator-activated receptor a mRNA and conversely inhibition of estrogen receptor alpha by ICI-182 780 in estrogen receptor a positive, MCF-7 cells increased peroxisome proliferator-activated receptor a mRNA levels. Estrogen receptor alpha levels can be modulated by histone deacetylase inhibitors and such agents are in clinical trials for cancer treatment. We found the histone deacetylase inhibitor, sodium butyrate, increased peroxisome proliferator-activated receptor alpha mRNA levels within 4 h of treatment. Peroxisome proliferator-activated receptor a modulation was independent of estrogen receptor alpha, as a similar increase was observed in the estrogen receptor a negative MDA-MB-231 cells. To further investigate the relationship between sodium butyrate and peroxisome proliferator-activated receptor alpha expression, we created an MCF-7 cell line that conditionally over-expresses human peroxisome proliferator-activated receptor alpha. Over-expression of the peroxisome proliferator-activated receptor protected MCF-7 cells from sodium butyrate-mediated inhibition of proliferation and attenuated sodium butyrate-mediated induction of histone deacetylase 3 mRNA, indicating that elevated levels of peroxisome proliferator-activated receptor alpha may reduce the sensitivity of cells to histone deacetylase inhibitors. The estrogen receptor alpha dependence of peroxisome proliferator-activated receptor alpha levels may be significant since estrogen receptor alpha negative breast cancer cells are associated with a more aggressive phenotype. Our studies also suggest that peroxisome proliferator-activated receptor alpha levels may be a marker of breast cancer cell sensitivity to histone deacetylase inhibitors. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The p53 tumor suppressor gene is the most frequently mutated gene in human cancer; this gene is mutated in up to 50% of human tumors. It has a critical role in the cell cycle, apoptosis and cell senescence, and it participates in many crucial physiological and pathological processes. Polymorphisms of p53 have been suggested to be associated with genetically determined susceptibility in various types of cancer. Another process involved with the development and progression of tumors is DNA hypermethylation. Aberrant methylation of the promoter is an alternative epigenetic change in genetic mechanisms, leading to tumor suppressor gene inactivation. In the present study, we examined the TP53 Arg72Pro and Pro47Ser polymorphisms using PCR-RFLP and the pattern of methylation of the p53 gene by methylation-specific PCR in 90 extra-axial brain tumor samples. Patients who had the allele Pro of the TP53 Arg72Pro polymorphism had an increased risk of tumor development ( odds ratio, OR = 3.23; confidence interval at 95%, 95% CI = 1.71-6.08; P = 0.003), as did the allele Ser of TP53 Pro47Ser polymorphism (OR = 1.28; 95% CI = 0.03-2.10; P = 0.01). Comparison of overall survival of patients did not show significant differences. In the analysis of DNA methylation, we observed that 37.5% of meningiomas, 30% of schwannomas and 52.6% of metastases were hypermethylated, suggesting that methylation is important for tumor progression. We suggest that TP53 Pro47Ser and Arg72Pro polymorphisms and DNA hypermethylation are involved in susceptibility for developing extra-axial brain tumors.
Resumo:
Background: Melatonin is associated with direct or indirect actions upon female reproductive function. However, its effects on sex hormones and steroid receptors during ovulation are not clearly defined. This study aimed to verify whether exposure to long-term melatonin is able to cause reproductive hormonal disturbances as well as their role on sex steroid receptors in the rat ovary, oviduct and uterus during ovulation. Methods: Twenty-four adult Wistar rats, 60 days old (+/-250 g) were randomly divided into two groups. Control group (Co): received 0.9% NaCl 0.3 mL + 95% ethanol 0.04 mL as vehicle; Melatonin-treated group (MEL): received vehicle + melatonin [ 100 mu g/100 g BW/day] both intraperitoneally during 60 days. All animals were euthanized by decapitation during the morning estrus at 4 a. m. Results: Melatonin significantly reduced the plasma levels of LH and 17 beta-estradiol, while urinary 6-sulfatoximelatonin (STM) was increased at the morning estrus. In addition, melatonin promoted differential regulation of the estrogen receptor (ER), progesterone receptor (PR), androgen receptor (AR) and melatonin receptor (MTR) along the reproductive tissues. In ovary, melatonin induced a down-regulation of ER-alpha and PRB levels. Conversely, it was observed that PRA and MT1R were up-regulated. In oviduct, AR and ER-alpha levels were down-regulated, in contrast to high expression of both PRA and PRB. Finally, the ER-beta and PRB levels were down-regulated in uterus tissue and only MT1R was up-regulated. Conclusions: We suggest that melatonin partially suppress the hypothalamus-pituitary-ovarian axis, in addition, it induces differential regulation of sex steroid receptors in the ovary, oviduct and uterus during ovulation.
Resumo:
Background: DAPfinder and DAPview are novel BRB-ArrayTools plug-ins to construct gene coexpression networks and identify significant differences in pairwise gene-gene coexpression between two phenotypes. Results: Each significant difference in gene-gene association represents a Differentially Associated Pair (DAP). Our tools include several choices of filtering methods, gene-gene association metrics, statistical testing methods and multiple comparison adjustments. Network results are easily displayed in Cytoscape. Analyses of glioma experiments and microarray simulations demonstrate the utility of these tools. Conclusions: DAPfinder is a new friendly-user tool for reconstruction and comparison of biological networks.
Resumo:
Background: The transcription factors SREBP1 and SCAP are involved in intracellular cholesterol homeostasis. Polymorphisms of these genes have been associated with variations on serum lipid levels and response to statins that are potent cholesterol-lowering drugs. We evaluated the effects of atorvastatin on SREBF1a and SCAP mRNA expression in peripheral blood mononuclear cells (PBMC) and a possible association with gene polymorphisms and lowering-cholesterol response. Methods: Fifty-nine hypercholesterolemic patients were treated with atorvastatin (10 mg/day for 4 weeks). Serum lipid profile and mRNA expression in PBMC were assessed before and after the treatment. Gene expression was quantified by real-time PCR using GAPD as endogenous reference and mRNA expression in HepG2 cells as calibrator. SREBF1 -36delG and SCAP A2386G polymorphisms were detected by PCR-RFLP. Results: Our results showed that transcription of SREBF1a and SCAP was coordinately regulated by atorvastatin (r=0.595, p<0.001), and that reduction in SCAP transcription was associated with the 2386AA genotype (p=0.019). Individuals who responded to atorvastatin with a downregulation of SCAP had also a lower triglyceride compared to those who responded to atorvastatin with an upregulation of SCAP. Conclusion: Atorvastatin has differential effects on SREBF1a and SCAP mRNA expression in PBMC that are associated with baseline transcription levels, triglycerides response to atorvastatin and SCAP A2386G polymorphism. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The ligand-binding domain of the low-density lipoprotein (LDL) receptor is comprised of seven tandemly repeated ligand-binding modules, each being approximately 40 amino acids long and containing six conserved cysteine residues. We have expressed and characterized a concatemer of the first two modules (LB1 and LB2) of the human LDL receptor. Oxidative folding of the recombinant concatemer (rLB(1-2)), in the presence of calcium ions, gave a single dominant isomer with six disulfide bonds. Peptic cleavage of the short Linker region that connects the last cysteine residue of LB1 and the first cysteine residue of LB2 yielded two discrete fragments, thus excluding the presence of intermodule disulfide bonds. The N-terminal module, LB1, reacted with a conformation-specific monoclonal antibody (IgG-C7) made to LB1 in the native LDL receptor. From this, we concluded that the first module was correctly folded, with the same set of disulfide bonds as LB1 of the LDL receptor. The disulfide bond connections of LB2 were identified from mass spectral analysis of fragments formed by digestion of the C-terminal peptic fragment with elastase. These data showed that the disulfide bonds of LB2 connected Cys(I) and Cys(III), Cys(II) and Cys(V), and Cys(IV) and Cys(VI). This pattern is identical to that found for recombinant LB1 and LB2. The concatemer has two high-affinity calcium-binding sites, one per module. An analysis of the secondary chemical shifts of C alpha protons shows that the conformations of LB1 and LB2 in the concatemer are very similar to those of the individual modules, with no evidence for strong interactions between the two modules.
Resumo:
Background: IL-5 controls development of eosinophilia and has been shown to be involved in the pathogenesis of allergic diseases. In both atopic and nonatopic asthma, elevated IL-5 has been detected in peripheral blood and the airways. IL-5 is produced mainly by activated T cells, and its expression is regulated at the transcriptional level. Objective: This study focuses on the functional analysis of the human IL-5 (hIL-5) promoter and characterization of eis-regulatory elements and transcription factors involved in the suppression of IL-5 transcription in T cells. Methods: Methods used in this study include DNase I footprint assays, electrophoretic mobility shift assays, and functional analysis by mammalian cell transfection involving deletion analysis and site-directed mutagenesis. Results: We identified 5 protein binding regions (BRs) located within the proximal hIL-5 promoter. Functional analysis indicates that the BRs are involved in control of hIL-5 promoter activity. Two of these regions, BR3 and BR4 located at positions -102 to -73, have not previously been described as regulators of IL-5 expression in T cells. We show that the BR3 sequence contains a novel negative regulatory element located at positions -90 to -79 of the hIL-5 promoter, which binds Oct1, octamer-like, and YY1 nuclear factors. Substitution mutations, which abolished binding of these proteins to the BR3 sequence, significantly increased hIL-5 promoter activity in activated T cells. Conclusion: We suggest that Oct1, YY1, and octamer-like factors binding to the -90/-79 sequence within the proximal IL-5 promoter are involved in suppression of IL-5 transcription in T cells.
Resumo:
Background: A major goal in the post-genomic era is to identify and characterise disease susceptibility genes and to apply this knowledge to disease prevention and treatment. Rodents and humans have remarkably similar genomes and share closely related biochemical, physiological and pathological pathways. In this work we utilised the latest information on the mouse transcriptome as revealed by the RIKEN FANTOM2 project to identify novel human disease-related candidate genes. We define a new term patholog to mean a homolog of a human disease-related gene encoding a product ( transcript, anti-sense or protein) potentially relevant to disease. Rather than just focus on Mendelian inheritance, we applied the analysis to all potential pathologs regardless of their inheritance pattern. Results: Bioinformatic analysis and human curation of 60,770 RIKEN full-length mouse cDNA clones produced 2,578 sequences that showed similarity ( 70 - 85% identity) to known human-disease genes. Using a newly developed biological information extraction and annotation tool ( FACTS) in parallel with human expert analysis of 17,051 MEDLINE scientific abstracts we identified 182 novel potential pathologs. Of these, 36 were identified by computational tools only, 49 by human expert analysis only and 97 by both methods. These pathologs were related to neoplastic ( 53%), hereditary ( 24%), immunological ( 5%), cardio-vascular (4%), or other (14%), disorders. Conclusions: Large scale genome projects continue to produce a vast amount of data with potential application to the study of human disease. For this potential to be realised we need intelligent strategies for data categorisation and the ability to link sequence data with relevant literature. This paper demonstrates the power of combining human expert annotation with FACTS, a newly developed bioinformatics tool, to identify novel pathologs from within large-scale mouse transcript datasets.