995 resultados para Human Hydatid-disease
Resumo:
This article describes the history of the Human Genome Project, how the human genome was sequenced, and analyses the likely impact which the results will have on the diagnosis, scientific understanding and, ultimately, treatment of ocular disease in the future.
Resumo:
Cognitive systems research involves the synthesis of ideas from natural and artificial systems in the analysis, understanding, and design of all intelligent systems. This chapter discusses the cognitive systems associated with the hippocampus (HC) of the human brain and their possible role in behaviour and neurodegenerative disease. The hippocampus (HC) is concerned with the analysis of highly abstract data derived from all sensory systems but its specific role remains controversial. Hence, there have been three major theories concerning its function, viz., the memory theory, the spatial theory, and the behavioral inhibition theory. The memory theory has its origin in the surgical destruction of the HC, which results in severe anterograde and partial retrograde amnesia. The spatial theory has its origin in the observation that neurons in the HC of animals show activity related to their location within the environment. By contrast, the behavioral inhibition theory suggests that the HC acts as a ‘comparator’, i.e., it compares current sensory events with expected or predicted events. If a set of expectations continues to be verified then no alteration of behavior occurs. If, however, a ‘mismatch’ is detected then the HC intervenes by initiating appropriate action by active inhibition of current motor programs and initiation of new data gathering. Understanding the cognitive systems of the hippocampus in humans may aid in the design of intelligent systems involved in spatial mapping, memory, and decision making. In addition, this information may lead to a greater understanding of the course of clinical dementia in the various neurodegenerative diseases in which there is significant damage to the HC.
Resumo:
This article discusses the structure, anatomical connections, and functions of the hippocampus (HC) of the human brain and its significance in neuropsychology and disease. The HC is concerned with the analysis of highly abstract data derived from all sensory systems but its specific role remains controversial. Hence, there have been three major theories concerning its function, viz., the memory theory, the spatial theory, and the behavioral inhibition system (BIS) theory. The memory theory has its origin in the surgical destruction of the HC, which results in severe anterograde and partial retrograde amnesia. The spatial theory has its origin in the observation that neurons in the HC of animals show activity related to their location within the environment. By contrast, the behavioral inhibition theory suggests that the HC acts as a ‘comparator’, i.e., it compares current sensory events with expected or predicted events. If a set of expectations continues to be verified then no alteration of behavior occurs. If, however, a ‘mismatch’ is detected then the HC intervenes by initiating appropriate action by active inhibition of current motor programs and initiation of new data gathering. Understanding the anatomical connections of the hippocampus may lead to a greater understanding of memory, spatial orientation, and states of anxiety in humans. In addition, HC damage is a feature of neurodegenerative diseases such as Alzheimer’s disease (AD), dementia with Lewy bodies (DLB), Pick’s disease (PiD), and Creutzfeldt-Jakob disease (CJD) and understanding HC function may help to explain the development of clinical dementia in these disorders.
Resumo:
This article discusses the structure, anatomical connections, and functions of the hippocampus (HC) of the human brain and its significance in neuropsychology and disease. The HC is concerned with the analysis of highly abstract data derived from all sensory systems but its specific role remains controversial. Hence, there have been three major theories concerning its function, viz., the memory theory, the spatial theory, and the behavioral inhibition system (BIS) theory. The memory theory has its origin in the surgical destruction of the HC, which results in severe anterograde and partial retrograde amnesia. The spatial theory has its origin in the observation that neurons in the HC of animals show activity related to their location within the environment. By contrast, the behavioral inhibition theory suggests that the HC acts as a 'comparator', i.e., it compares current sensory events with expected or predicted events. If a set of expectations continues to be verified then no alteration of behavior occurs. If, however, a 'mismatch' is detected then the HC intervenes by initiating appropriate action by active inhibition of current motor programs and initiation of new data gathering. Understanding the anatomical connections of the hippocampus may lead to a greater understanding of memory, spatial orientation, and states of anxiety in humans. In addition, HC damage is a feature of neurodegenerative diseases such as Alzheimer's disease (AD), dementia with Lewy bodies (DLB), Pick's disease (PiD), and Creutzfeldt-Jakob disease (CJD) and understanding HC function may help to explain the development of clinical dementia in these disorders.
Resumo:
Editorial
Resumo:
2000 Mathematics Subject Classification: 62P10, 92D10, 92D30, 94A17, 62L10.
Resumo:
The purpose of this study was to investigate women's knowledge and attitudes regarding genital human papillomavirus (n=100). Using a descriptive design, the Health Education Questionnaire was administered to 100 female patients (Mean Age = 33, SD = 7.17) at a physicians office in South Florida. The results indicated a lack of knowledge regarding genital human papillomavirus with 21 patients (21%) reported having knowledge and 79 (79%) having never heard of this disease. In addition, the group familiar with genital human papillomavirus also possessed a low level of knowledge with only 57% acknowledging an association of genital human papillomavirus and cervical cancer, 52% aware that a pap smear can detect the virus, 42% knowing that antibiotics can not treat the disease and 57% aware that it is not associated with a family history. An association was found between attitudes and health seeking behaviors. Subjects stating that they would take all measures to prevent genital human papillomavirus, were more likely to have a pap smear within the last year (Chi-square (1) = 4.33, p < .05). Higher levels of education and income were associated with increased knowledge regarding genital human papillomavirus when subjects were categorized according to sociodemographic characteristic (Chi-square (1) =9.45, p < .05; Chi-square (1) = 6.75, p < .05). There was no significant correlation between knowledge and ethnicity, marital status or age. Findings indicated the need for improved education and promotion of positive attitudes regarding human papillomaviurs in order to improve health seeking behaviors among women.
Resumo:
BACKGROUND: Preclinical studies have found differential effects of isoflurane and propofol on the Alzheimer's disease (AD)-associated markers tau, phosphorylated tau (p-tau) and amyloid-β (Aβ). OBJECTIVE: We asked whether isoflurane and propofol have differential effects on the tau/Aβ ratio (the primary outcome), and individual AD biomarkers. We also examined whether genetic/intraoperative factors influenced perioperative changes in AD biomarkers. METHODS: Patients undergoing neurosurgical/otolaryngology procedures requiring lumbar cerebrospinal fluid (CSF) drain placement were prospectively randomized to receive isoflurane (n = 21) or propofol (n = 18) for anesthetic maintenance. We measured perioperative CSF sample AD markers, performed genotyping assays, and examined intraoperative data from the electronic anesthesia record. A repeated measures ANOVA was used to examine changes in AD markers by anesthetic type over time. RESULTS: The CSF tau/Aβ ratio did not differ between isoflurane- versus propofol-treated patients (p = 1.000). CSF tau/Aβ ratio and tau levels increased 10 and 24 h after drain placement (p = 2.002×10-6 and p = 1.985×10-6, respectively), mean CSF p-tau levels decreased (p = 0.005), and Aβ levels did not change (p = 0.152). There was no interaction between anesthetic treatment and time for any of these biomarkers. None of the examined genetic polymorphisms, including ApoE4, were associated with tau increase (n = 9 polymorphisms, p > 0.05 for all associations). CONCLUSION: Neurosurgery/otolaryngology procedures are associated with an increase in the CSF tau/Aβ ratio, and this increase was not influenced by anesthetic type. The increased CSF tau/Aβ ratio was largely driven by increases in tau levels. Future work should determine the functional/prognostic significance of these perioperative CSF tau elevations.
Resumo:
Huntington’s disease (HD) is an autosomal neurodegenerative disorder affecting approximately 5-10 persons per 100,000 worldwide. The pathophysiology of HD is not fully understood but the age of onset is known to be highly dependent on the number of CAG triplet repeats in the huntingtin gene. Using 1H NMR spectroscopy this study biochemically profiled 39 brain metabolites in post-mortem striatum (n=14) and frontal lobe (n=14) from HD sufferers and controls (n=28). Striatum metabolites were more perturbed with 15 significantly affected in HD cases, compared with only 4 in frontal lobe (P<0.05; q<0.3). The metabolite which changed most overall was urea which decreased 3.25-fold in striatum (P<0.01). Four metabolites were consistently affected in both brain regions. These included the neurotransmitter precursors tyrosine and L-phenylalanine which were significantly depleted by 1.55-1.58-fold and 1.48-1.54-fold in striatum and frontal lobe, respectively (P=0.02-0.03). They also included L-leucine which was reduced 1.54-1.69-fold (P=0.04-0.09) and myo-inositol which was increased 1.26-1.37-fold (P<0.01). Logistic regression analyses performed with MetaboAnalyst demonstrated that data obtained from striatum produced models which were profoundly more sensitive and specific than those produced from frontal lobe. The brain metabolite changes uncovered in this first 1H NMR investigation of human HD offer new insights into the disease pathophysiology. Further investigations of striatal metabolite disturbances are clearly warranted.
Resumo:
International audience
Resumo:
International audience
Resumo:
The gut microbiome (GM) is a plastic entity, capable of adapting in response to intrinsic and extrinsic factors. However, several circumstances can disrupt this homeostatic balance, forcing the GM to shift from a health-associated mutualistic configuration to a disease-associated profile. Nowadays, a new frontier of microbiome research is understanding the GM role in chemo-immunotherapies and clinical outcomes. Here, the role of the genotoxin‐producing pathogen Salmonella in colorectal carcinogenesis was characterized by in-vitro models. A synergistic effect of Salmonella and the CRC-associated mutation (APC gene) promoted a tumorigenic microenvironment by increasing cellular genomic instability. Subsequently, the GM involvement in anti-cancer therapies was investigated via next-generation sequencing in different patient cohorts. The GM trajectory during treatments was characterized for women with epithelial ovarian cancer and pediatric patients undergoing hematopoietic stem cell transplantation (HSCT). The results highlighted the loss of GM homeostasis, with diversity reduction, decrease in health-associated microorganisms and pathobiont bloom. Interestingly, a distinctive GM profile was identified in ovarian cancer patients with a poor response to chemotherapy compared to patients in remission. Moreover, maintenance of GM homeostasis through enteral feeding in pediatric HSCT patients highlighted a better prognosis, with reduced risk of clinical complications. In this context, the gut resistome – the pattern of GM antibiotic-resistance genes (ARGs) – was evaluated longitudinally in HSCT patients. The results showed new acquisitions and consolidation of ARGs already present in patients developing clinical complications. Antibiotic exposure was also evaluated in infants under low-dose antibiotic prophylaxis for vesico-ureteral reflux showing an impairment of the GM configuration with possible long-term health implications. Dramatic GM dysbiosis was finally observed in critically ill patients with COVID-19 (undergoing multiple drug therapies) and correlated with increased risk of bloodstream infection. All these findings pointed out the importance of maintaining GM homeostasis during chemotherapy treatments for improving patients’ clinical outcomes.
Resumo:
The COVID-19 pandemic, sparked by the SARS-CoV-2 virus, stirred global comparisons to historical pandemics. Initially presenting a high mortality rate, it later stabilized globally at around 0.5-3%. Patients manifest a spectrum of symptoms, necessitating efficient triaging for appropriate treatment strategies, ranging from symptomatic relief to antivirals or monoclonal antibodies. Beyond traditional approaches, emerging research suggests a potential link between COVID-19 severity and alterations in gut microbiota composition, impacting inflammatory responses. However, most studies focus on severe hospitalized cases without standardized criteria for severity. Addressing this gap, the first study in this thesis spans diverse COVID-19 severity levels, utilizing 16S rRNA amplicon sequencing on fecal samples from 315 subjects. The findings highlight significant microbiota differences correlated with severity. Machine learning classifiers, including a multi-layer convoluted neural network, demonstrated the potential of microbiota compositional data to predict patient severity, achieving an 84.2% mean balanced accuracy starting one week post-symptom onset. These preliminary results underscore the gut microbiota's potential as a biomarker in clinical decision-making for COVID-19. The second study delves into mild COVID-19 cases, exploring their implications for ‘long COVID’ or Post-Acute COVID-19 Syndrome (PACS). Employing longitudinal analysis, the study unveils dynamic shifts in microbial composition during the acute phase, akin to severe cases. Innovative techniques, including network approaches and spline-based longitudinal analysis, were deployed to assess microbiota dynamics and potential associations with PACS. The research suggests that even in mild cases, similar mechanisms to hospitalized patients are established regarding changes in intestinal microbiota during the acute phase of the infection. These findings lay the foundation for potential microbiota-targeted therapies to mitigate inflammation, potentially preventing long COVID symptoms in the broader population. In essence, these studies offer valuable insights into the intricate relationships between COVID-19 severity, gut microbiota, and the potential for innovative clinical applications.
Resumo:
This study aimed at evaluating whether human papillomavirus (HPV) groups and E6/E7 mRNA of HPV 16, 18, 31, 33, and 45 are prognostic of cervical intraepithelial neoplasia (CIN) 2 outcome in women with a cervical smear showing a low-grade squamous intraepithelial lesion (LSIL). This cohort study included women with biopsy-confirmed CIN 2 who were followed up for 12 months, with cervical smear and colposcopy performed every three months. Women with a negative or low-risk HPV status showed 100% CIN 2 regression. The CIN 2 regression rates at the 12-month follow-up were 69.4% for women with alpha-9 HPV versus 91.7% for other HPV species or HPV-negative status (P < 0.05). For women with HPV 16, the CIN 2 regression rate at the 12-month follow-up was 61.4% versus 89.5% for other HPV types or HPV-negative status (P < 0.05). The CIN 2 regression rate was 68.3% for women who tested positive for HPV E6/E7 mRNA versus 82.0% for the negative results, but this difference was not statistically significant. The expectant management for women with biopsy-confirmed CIN 2 and previous cytological tests showing LSIL exhibited a very high rate of spontaneous regression. HPV 16 is associated with a higher CIN 2 progression rate than other HPV infections. HPV E6/E7 mRNA is not a prognostic marker of the CIN 2 clinical outcome, although this analysis cannot be considered conclusive. Given the small sample size, this study could be considered a pilot for future larger studies on the role of predictive markers of CIN 2 evolution.
Resumo:
Sickle cell disease (SCD) pathogenesis leads to recurrent vaso-occlusive and hemolytic processes, causing numerous clinical complications including renal damage. As vasoconstrictive mechanisms may be enhanced in SCD, due to endothelial dysfunction and vasoactive protein production, we aimed to determine whether the expression of proteins of the renin-angiotensin system (RAS) may be altered in an animal model of SCD. Plasma angiotensin II (Ang II) was measured in C57BL/6 (WT) mice and mice with SCD by ELISA, while quantitative PCR was used to compare the expressions of the genes encoding the angiotensin-II-receptors 1 and 2 (AT1R and AT2R) and the angiotensin-converting enzymes (ACE1 and ACE2) in the kidneys, hearts, livers and brains of mice. The effects of hydroxyurea (HU; 50-75mg/kg/day, 4weeks) treatment on these parameters were also determined. Plasma Ang II was significantly diminished in SCD mice, compared with WT mice, in association with decreased AT1R and ACE1 expressions in SCD mice kidneys. Treatment of SCD mice with HU reduced leukocyte and platelet counts and increased plasma Ang II to levels similar to those of WT mice. HU also increased AT1R and ACE2 gene expression in the kidney and heart. Results indicate an imbalanced RAS in an SCD mouse model; HU therapy may be able to restore some RAS parameters in these mice. Further investigations regarding Ang II production and the RAS in human SCD may be warranted, as such changes may reflect or contribute to renal damage and alterations in blood pressure.