949 resultados para Heat and Mass Transfer
Resumo:
Micro Combined Heat and Power (Micro-CHP) system produces both electricity and heat required for residential or small business applications. Use of Micro-CHP in a residential application not only creates energy and economic savings but also reduces the carbon foot print of the house or small business. Additionally, micro-CHP can subsidize its cost of operation by selling excess electricity produced back to the grid. Even though Micro-CHP remains attractive on paper, high initial cost and optimization issues in residential scale heat and electrical requirement has kept this technology from becoming a success. To understand and overcome all disadvantages posed my Micro-CHP system, a laboratory is developed to test different scenarios of Micro-CHP applications so that we can learn and improve the current technology. This report focuses on the development of this Micro-CHP laboratory including installation of Ecopower micro-CHP unit, developing fuel line and exhaust line for Ecopower unit, design of electrical and thermal loop, installing all the instrumentation required for data collection on the Ecopower unit and developing controls for heat load simulation using thermal loop. Also a simulation of Micro-CHP running on Syngas is done in Matlab. This work was supported through the donation of ‘Ecopower’ a Micro-CHP unit by Marathon Engine and through the support of Michigan Tech REF-IF grand.
Resumo:
The single-celled protozoan Trypanosoma brucei spp. is the causative agent of human African trypanosomiasis and nagana in cattle. Quantitative proteomics for the first time allowed for the characterization of the proteome from several different life stages of the parasite (1-3). To achieve this, stable isotope labeling by amino acids in cell culture (SILAC; (4)) was adapted to T. brucei spp. cultures. T. brucei cells grown in standard media with dialyzed fetal calf serum containing heavy isotope-labeled amino acids (arginine and lysine) show efficient incorporation of the labeled amino acids into the whole cell proteome (8-12 divisions) and no detectable amino acid conversions. The method can be applied to both of the major life stages of the parasite and in combination with RNAi or gene knock-out approaches.
Resumo:
The heat waves of 2003 in Western Europe and 2010 in Russia, commonly labelled as rare climatic anomalies outside of previous experience, are often taken as harbingers of more frequent extremes in the global warming-influenced future. However, a recent reconstruction of spring–summer temperatures for WE resulted in the likelihood of significantly higher temperatures in 1540. In order to check the plausibility of this result we investigated the severity of the 1540 drought by putting forward the argument of the known soil desiccation-temperature feedback. Based on more than 300 first-hand documentary weather report sources originating from an area of 2 to 3 million km2, we show that Europe was affected by an unprecedented 11-month-long Megadrought. The estimated number of precipitation days and precipitation amount for Central and Western Europe in 1540 is significantly lower than the 100-year minima of the instrumental measurement period for spring, summer and autumn. This result is supported by independent documentary evidence about extremely low river flows and Europe-wide wild-, forest- and settlement fires. We found that an event of this severity cannot be simulated by state-of-the-art climate models.
Resumo:
In astrophysical regimes where the collisional excitation of hydrogen atoms is relevant, the cross-sections for the interactions of hydrogen atoms with electrons and protons are necessary for calculating line profiles and intensities. In particular, at relative velocities exceeding ∼1000 km s−1, collisional excitation by protons dominates over that by electrons. Surprisingly, the H–H+ cross-sections at these velocities do not exist for atomic levels of n≥ 4, forcing researchers to utilize extrapolation via inaccurate scaling laws. In this study, we present a faster and improved algorithm for computing cross-sections for the H–H+ collisional system, including excitation and charge transfer to the n≥ 2 levels of the hydrogen atom. We develop a code named BDSCX which directly solves the Schrödinger equation with variable (but non-adaptive) resolution and utilizes a hybrid spatial-Fourier grid. Our novel hybrid grid reduces the number of grid points needed from ∼4000n6 (for a ‘brute force’, Cartesian grid) to ∼2000n4 and speeds up the computation by a factor of ∼50 for calculations going up to n= 4. We present (l, m)-resolved results for charge transfer and excitation final states for n= 2–4 and for projectile energies of 5–80 keV, as well as fitting functions for the cross-sections. The ability to accurately compute H–H+ cross-sections to n= 4 allows us to calculate the Balmer decrement, the ratio of Hα to Hβ line intensities. We find that the Balmer decrement starts to increase beyond its largely constant value of 2–3 below 10 keV, reaching values of 4–5 at 5 keV, thus complicating its use as a diagnostic of dust extinction when fast (∼1000 km s−1) shocks are impinging upon the ambient interstellar medium.
Resumo:
DNA can serve as a versatile scaffold for chromophore assemblies. For example, light-harvesting antennae have been realized by incorporating phenanthrene and pyrene building blocks into DNA strands. It was shown that by exciting at 320 nm (absorption of phenanthrene), an emission at 450 nm is observed which corresponds to a phenanthrene-pyrene exciplex. The more phenanthrenes are added into the DNA duplex, the higher is the fluorescence intensity with no significant change in quantum yield. This shows that phenanthrene acts as a donor and efficiently transfers the excitation energy to the pyrene. Up to now, the mechanism of this energy transfer and exciplex formation is not known. Therefore, we first aim at studying the photo-cycle of such DNA assemblies through transient absorption spectroscopy. Based on the results, we will explore ways to manipulate the energy transfer by application of intense THz fields. Ground as well as excited state Stark effect dynamics will be investigated.
Resumo:
Supervisor support, peer support and transfer motivation have been identified as important predictors for training transfer. Transfer motivation is supposed to mediate the support–training transfer relationship. Especially after team training interventions that include all team members (i.e., intact-team training), individual perception of these factors might be shared among team members. However, an integration of the team level in the training transfer process is rare, yet still needed. Analyzing 194 employees from 34 teams in the context of intact-team training interventions, we found similar relationships and processes at both levels of analysis: Social support enhances transfer motivation at the individual and team levels. Furthermore, motivation to transfer increases training transfer and serves as a connecting mechanism in the social support–training transfer link. The results underline the importance of (1) considering multiple levels in theories and research about the training transfer process and (2) ensuring the practice of individual-directed support and a shared, supportive climate within teams.