952 resultados para HLA Antigens - genetics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kohonneiden kolesterolipitoisuuksien alentamisessa käytettävien statiinien hyödyt sydän- ja verisuonisairauksien estossa on vahvasti osoitettu ja niiden käyttö on niin Suomessa kuin muuallakin maailmassa kasvanut voimakkaasti – Suomessa statiininkäyttäjiä on noin 600 000. Statiinilääkitys on pitkäaikaisessakin käytössä melko hyvin siedetty, mutta yleisimpinä haittavaikutuksina voi ilmetä lihasheikkoutta, -kipua ja -kramppeja, jotka voivat edetä jopa henkeä uhkaavaksi lihasvaurioksi. Lihashaittariski suurenee suhteessa statiiniannokseen ja plasman statiinipitoisuuksiin. Statiinien plasmapitoisuuksissa, tehossa ja haittavaikutusten ilmenemisessä on suuria potilaskohtaisia eroja. SLCO1B1-geenin koodaama OATP1B1-kuljetusproteiini kuljettaa monia elimistön omia aineita ja lääkeaineita verenkierrosta solukalvon läpi maksasoluun, mm. statiineja, joiden kolesterolia alentava vaikutus ja poistuminen elimistöstä tapahtuvat pääosin maksassa. Erään SLCO1B1-geenin nukleotidimuutoksen (c.521T>C) tiedetään heikentävän OATP1B1:n kuljetustehoa. Tässä väitöskirjatyössä selvitettiin SLCO1B1-geenin perinnöllistä muuntelua suomalaisilla ja eri väestöissä maailmanlaajuisesti. Lisäksi selvitettiin SLCO1B1:n muunnosten vaikutusta eri statiinien pitoisuuksiin (farmakokinetiikka) ja vaikutuksiin (farmakodynamiikka) sekä kolesteroliaineenvaihduntaan. Näihin tutkimuksiin valittiin SLCO1B1-genotyypin perusteella terveitä vapaaehtoisia koehenkilöitä, joille annettiin eri päivinä kerta-annos kutakin tutkittavaa statiinia: fluvastatiinia, pravastatiinia, simvastatiinia, rosuvastatiinia ja atorvastatiinia. Verinäytteistä määritettiin plasman statiinien ja niiden aineenvaihduntatuotteiden sekä kolesterolin ja sen muodostumista ja imeytymistä kuvaavien merkkiaineiden pitoisuuksia. Toiminnallisesti merkittävien SLCO1B1-geenimuunnosten esiintyvyydessä todettiin suuria eroja eri väestöjen välillä. Suomalaisilla SLCO1B1 c.521TC-genotyypin (geenimuunnos toisessa vastinkromosomissa) esiintyvyys oli noin 32 % ja SLCO1B1 c.521CC-genotyypin (geenimuunnos molemmissa vastinkromosomeissa) esiintyvyys noin 4 %. Globaalisti geenimuunnosten esiintyvyys korreloi maapallon leveyspiirien kanssa siten, että matalaan transportteriaktiivisuuteen johtavat muunnokset olivat yleisimpiä pohjoisessa ja korkeaan aktiivisuuteen johtavat päiväntasaajan lähellä asuvilla väestöillä. SLCO1B1-genotyypillä oli merkittävä vaikutus statiinien plasmapitoisuksiin lukuun ottamatta fluvastatiinia. Simvastatiinihapon plasmapitoisuudet olivat keskimäärin 220 %, atorvastatiinin 140 %, pravastatiinin 90 % ja rosuvastatiinin 70 % suuremmat c.521CC-genotyypin omaavilla koehenkilöillä verrattuna normaalin c.521TT-genotyypin omaaviin. Genotyypillä ei ollut merkittävää vaikutusta minkään statiinin tehoon tässä kerta-annostutkimuksessa, mutta geenimuunnoksen kantajilla perustason kolesterolisynteesinopeus oli suurempi. Tulokset osoittavat, että SLCO1B1 c.521T>C geenimuunnos on varsin yleinen suomalaisilla ja muilla ei-afrikkalaisilla väestöillä. Tämä geenimuunnos voi altistaa erityisesti simvastatiinin, mutta myös atorvastatiinin, pravastatiinin ja rosuvastatiinin, aiheuttamille lihashaitoille suurentamalla niiden plasmapitoisuuksia. SLCO1B1:n geenimuunnoksen testaamista voidaan tulevaisuudessa käyttää apuna valittaessa sopivaa statiinilääkitystä ja -annosta potilaalle, ja näin parantaa sekä statiinihoidon turvallisuutta että tehoa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: To gain insight on the immunological processes behind cow’s milk allergy (CMA) and the development of oral tolerance. To furthermore investigate the associations of HLA II and filaggrin genotypes with humoral responses to early oral antigens. Methods: The study population was from a cohort of 6209 healthy, full-term infants who in a double-blind randomized trial received supplementary feeding at maternity hospitals (mean duration 4 days): cow’s milk (CM) formula, extensively hydrolyzed whey formula or donor breast milk. Infants who developed CM associated symptoms that subsided during elimination diet (n=223) underwent an open oral CM challenge (at mean age 7 months). The challenge was negative in 112, and in 111 it confirmed CMA, which was IgE-mediated in 83. Patients with CMA were followed until recovery, and 94 of them participated in a follow-up study at age 8-9 years. We investigated serum samples at diagnosis (mean age 7 months, n=111), one year later (19 months, n=101) and at follow-up (8.6 years, n=85). At follow-up, also 76 children randomly selected from the original cohort and without CM associated symptoms were included. We measured CM specific IgE levels with UniCAP (Phadia, Uppsala, Sweden), and β-lactoglobulin, α-casein and ovalbumin specific IgA, IgG1, IgG4 and IgG levels with enzyme-linked immunosorbent assay in sera. We applied a microarray based immunoassay to measure the binding of IgE, IgG4 and IgA serum antibodies to sequential epitopes derived from five major CM proteins at the three time points in 11 patients with active IgE-mediated CMA at age 8-9 years and in 12 patients who had recovered from IgE-mediated CMA by age 3 years. We used bioinformatic methods to analyze the microarray data. We studied T cell expression profile in peripheral blood mononuclear cell (PBMC) samples from 57 children aged 5-12 years (median 8.3): 16 with active CMA, 20 who had recovered from CMA by age 3 years, 21 non-atopic control subjects. Following in vitro β-lactoglobulin stimulation, we measured the mRNA expression in PBMCs of 12 T-cell markers (T-bet, GATA-3, IFN-γ, CTLA4, IL-10, IL-16, TGF-β, FOXP3, Nfat-C2, TIM3, TIM4, STIM-1) with quantitative real time polymerase chain reaction, and the protein expression of CD4, CD25, CD127, FoxP3 with flow cytometry. To optimally distinguish the three study groups, we performed artificial neural networks with exhaustive search for all marker combinations. For genetic associations with specific humoral responses, we analyzed 14 HLA class II haplotypes, the PTPN22 1858 SNP (R620W allele) and 5 known filaggrin null mutations from blood samples of 87 patients with CMA and 76 control subjects (age 8.0-9.3 years). Results: High IgG and IgG4 levels to β-lactoglobulin and α-casein were associated with the HLA (DR15)-DQB1*0602 haplotype in patients with CMA, but not in control subjects. Conversely, (DR1/10)-DQB1*0501 was associated with lower IgG and IgG4 levels to these CM antigens, and to ovalbumin, most significantly among control subjects. Infants with IgE-mediated CMA had lower β -lactoglobulin and α-casein specific IgG1, IgG4 and IgG levels (p<0.05) at diagnosis than infants with non-IgE-mediated CMA or control subjects. When CMA persisted beyond age 8 years, CM specific IgE levels were higher at all three time points investigated and IgE epitope binding pattern remained stable (p<0.001) compared with recovery from CMA by age 3 years. Patients with persisting CMA at 8-9 years had lower serum IgA levels to β-lactoglobulin at diagnosis (p=0.01), and lower IgG4 levels to β-lactoglobulin (p=0.04) and α-casein (p=0.05) at follow-up compared with patients who recovered by age 3 years. In early recovery, signal of IgG4 epitope binding increased while that of IgE decreased over time, and binding patterns of IgE and IgG4 overlapped. In T cell expression profile in response to β –lactoglobulin, the combination of markers FoxP3, Nfat-C2, IL-16, GATA-3 distinguished patients with persisting CMA most accurately from patients who had become tolerant and from non-atopic subjects. FoxP3 expression at both RNA and protein level was higher in children with CMA compared with non-atopic children. Conclusions: Genetic factors (the HLA II genotype) are associated with humoral responses to early food allergens. High CM specific IgE levels predict persistence of CMA. Development of tolerance is associated with higher specific IgA and IgG4 levels and lower specific IgE levels, with decreased CM epitope binding by IgE and concurrent increase in corresponding epitope binding by IgG4. Both Th2 and Treg pathways are activated upon CM antigen stimulation in patients with CMA. In the clinical management of CMA, HLA II or filaggrin genotyping are not applicable, whereas the measurement of CM specific antibodies may assist in estimating the prognosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium tuberculosis, the causative agent of pulmonary tuberculosis, infects one-third of the world's population. Activation of host immune responses for containment of mycobacterial infections involves participation of innate immune cells, such as dendritic cells (DCs). DCs are sentinels of the immune system and are important for eliciting both primary and secondary immune responses to pathogens. In this context, to understand the molecular pathogenesis of tuberculosis and host response to mycobacteria and to conceive prospective vaccine candidates, it is important to understand how cell wall Ags of M.tuberculosis and, in particular, the proline-glutamic acid-polymorphicguanine-cytosine-rich sequence (PE_PGRS) family of proteins modulate DC maturation and function. In this study, we demonstrate that two cell wall-associated/secretory PE_PGRS proteins, PE_PGRS 17 (Rv0978c) and PE_PGRS 11 (Rv0754), recognize TLR2, induce maturation and activation of human DCs, and enhance the ability of DCs to stimulate CD4(+) T cells. We further found that PE_PGRS protein-mediated activation of DCs involves participation of ERK1/2, p38 MAPK, and NF-kappa B signaling pathways. Priming of human DCs with IFN-gamma further augmented PE_PGRS 17 or PE_PGRS 11 Ag-induced DC maturation and secretion of key proinflammatory cytokines. Our results suggest that by activating DCs, PE_PGRS proteins, important mycobacterial cell wall Ags, could potentially contribute in the initiation of innate immune responses during tuberculosis infection and hence regulate the clinical course of tuberculosis. The Journal of Immunology, 2010, 184: 3495-3504.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium tuberculosis, the causative agent of pulmonary tuberculosis, infects one-third of the world's population. Activation of host immune responses for containment of mycobacterial infections involves participation of innate immune cells, such as dendritic cells (DCs). DCs are sentinels of the immune system and are important for eliciting both primary and secondary immune responses to pathogens. In this context, to understand the molecular pathogenesis of tuberculosismand host response to mycobacteria and to conceive prospective vaccine candidates, it is important to understand how cell wall Ags of M. tuberculosis and, in particular, the proline-glutamic acid-polymorphic guanine-cytosine-rich sequence (PE_PGRS) family of proteins modulate DC maturation and function. In this study, we demonstrate that two cell wall-associated/secretory PE_PGRS proteins, PE_PGRS 17 (Rv0978c) and PE_PGRS 11 (Rv0754), recognize TLR2, induce maturation and activation of human DCs, and enhance the ability of DCs to stimulate CD4(+) T cells. We further found that PE_PGRS protein-mediated activation of DCs involves participation of ERK1/2, p38 MAPK, and NF-kappa B signaling pathways. Priming of human DCs with IFN-gamma further augmented PE_PGRS 17 or PE_PGRS 11 Ag-induced DC maturation and secretion of key proinflammatory cytokines. Our results suggest that by activating DCs, PE_PGRS proteins, important mycobacterial cell wall Ags, could potentially contribute in the initiation of innate immune responses during tuberculosis infection and hence regulate the clinical course of tuberculosis. The Journal of Immunology, 2010, 184: 3495-3504.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent decades, nation-states have become major stakeholders in nonhuman genetic resource networks as a result of several international treaties. The most important of these is the juridically binding international Convention on Biological Diversity (CBD), signed at the Rio Earth Summit in 1992 by some 150 nations. This convention was a watershed for the identification of global rights related to genetic resources in recognising the sovereign power of signatory nations over their natural resources. The contracting parties are legally obliged to identify their native genetic material and to take legislative, administrative, and/or policy measures to foster research on genetic resources. In this process of global bioprospecting in the name of biodiversity conservation, the world's nonhuman genetic material is to be indexed according to nation and nationality. This globally legitimated process of native genetic identification inscribes national identity into nature and flesh. As a consequence, this new form of potential national biowealth forms also what could be called novel nonhuman genetic nationhoods. These national corporealities are produced in tactical and strategic encounters of the political and the scientific, in new spaces crafted through technical and institutional innovation, and between the national reconfiguration of the natural and cultural as framed by international political agreements. This work follows the creation of national genetic resources in one of the biodiversity-poor countries of the North, Finland. The thesis is an ethnographic work addressing the calculation of life: practices of identifying, evaluating, and collecting nonhuman life in national genetic programmes. The core of the thesis is about observations made within the Finnish Genetic Resources Programmes in 2004 2008, gathered via multi-sited ethnography and related methods derived from the anthropology of science. The thesis explores the problematic relations of the communal forms of human and nonhuman life in an increasingly technoscientific contemporaneity  the co-production and coexistence of human and nonhuman life in biopolitical formations called nations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the years, a wide range of methods to verify identity have been developed. Molecular markers have been used for identification since the 1920s, commencing with blood types and culminating with the advent of DNA techniques in the 1980s. Identification is required by authorities in many occasions, e.g. in disputed paternity cases, identification of deceased, or crime investigation. To clarify maternal and paternal lineages, uniparental DNA markers in mtDNA and Y-chromosome can be utilized. These markers have several advantages: male specific Y-chromosome can be used to identify a male from a mixture of male and female cells, e.g. in rape cases. MtDNA is durable and has a high copy number, allowing analyses even from old or degraded samples. However, both markers are lineage-specific, not individualizing, and susceptible to genetic drift. Prior to the application of any DNA marker in forensic casework, it is of utmost importance to investigate its qualities and peculiarities in the target population. Earlier studies on the Finnish population have shown reduced variation in the Y-chromosome, but in mtDNA results have been ambiguous. The obtained results confirmed the low diversity in Y-chromosome in Finland. Detailed population analysis revealed large regional differences, and extremely reduced diversity especially in East Finland. Analysis of the qualities affecting Y-chromosomal short tandem repeat (Y-STR) variation and mutation frequencies, and search of new polymorphic markers resulted a set of Y-STRs with especially high diversity in Finland. Contrary to Y-chromosome, neither reduced diversity nor regional differences were found in mtDNA within Finland. In fact, mtDNA diversity was found similar to other European populations. The revealed peculiarities in the uniparental markers are a legacy of the Finnish population history. The obtained results challenge the traditional explanation which emphasizes relatively recent founder effects creating the observed east-west patterns. Uniparentally inherited markers, both mtDNA and Y-chromosome, are applicable for identification purposes in Finland. By adjusting the analysed Y marker set to meet the characteristics of Finnish population, Y-chromosomal diversity increases and the regional differentiation decreases, resulting increase in discrimination power and thus usefulness of Y-chromosomal analysis in forensic casework.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological invasions affect biodiversity worldwide, and, consequently, the invaded ecosystems may suffer from significant losses in economic and cultural values. Impatiens glandulifera Royle (Balsaminaceae) is an invasive annual herb, native to the western Himalayas and introduced into Europe in the 19th century as a garden ornamental plant. The massive invasion of I. glandulifera is due to its high reproductive output, rapid growth and its ability to outcompete native species. In Finland, the first observations regarding the presence of I. glandulifera date from the year 1947, and today it is considered a serious problem in riparian habitats. The aim of this master’s thesis research is to reveal the population genetic structure of I. glandulifera in Finland and to find out whether there have been one or multiple invasions in Finland. The study focuses on investigating the origin of I. glandulifera in Southern Finland, by comparing plant samples from the Helsinki region with those from its native region and other regions of invasion. Samples from four populations in Helsinki and from the United Kingdom, Canada, India and Pakistan were collected and genotyped using 11 microsatellite markers. The genetic analyses were evaluated using the programs Arlequin and Structure. The results of the genetic analyses suggested that I. glandulifera has been introduced to Finland more than once. Multiple introductions are supported by the higher level of genetic diversity detected within and among Finnish populations than would be expected for a single introduction. Results of the Bayesian Structure analysis divided the four Finnish populations into four clusters. This geographical structure was further supported by pairwise Fst values among populations. The causes and potential consequences of such multiple introductions of I. glandulifera in Finland and further perspectives are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is the most common cause of neurological disability in young adults, affecting more than two million people worldwide. It manifests as a chronic inflammation in the central nervous system (CNS) and causes demyelination and neurodegeneration. Depending on the location of the demyelinated plaques and axonal loss, a variety of symptoms can be observed including deficits in vision, coordination, balance and movement. With a typical age of onset at 20-40 years, the social and economic impacts of MS on lives of the patients and their families are considerable. Unfortunately the current treatments are relatively inefficient and the development of more effective treatments has been impeded by our limited understanding of the causes and pathogenesis of MS. Risk of MS is higher in biological relatives of MS patients than in the general population. Twin and adoption studies have shown that familial clustering of MS is explained by shared genetic factors rather than by shared familial environment. While the involvement of the human leukocyte antigen (HLA) genes was first discovered four decades ago, additional genetic risk factors have only recently been identified through genome-wide association studies (GWAS). Current evidence suggests that MS is a highly polygenic disease with perhaps hundreds of common variants with relatively modest effects contributing to susceptibility. Despite extensive research, the majority of these risk factors still remain to be identified. In this thesis the aim was to identify novel genes and pathways involved in MS. Using genome-wide microarray technology, gene expression levels in peripheral blood mononuclear cells (PBMC) from 12 MS patients and 15 controls were profiled and more than 600 genes with altered expression in MS were identified. Three of five selected findings, DEFA1A3, LILRA4 and TNFRSF25, were successfully replicated in an independent sample. Increased expression of DEFA1A3 in MS is a particularly interesting observation, because its elevated levels have previously been reported also in several other autoimmune diseases. A systematic review of seven microarray studies was then performed leading to identification of 229 genes, in which either decreased or increased expression in MS had been reported in at least two studies. In general there was relatively little overlap across the experiments: 11 of the 229 genes had been reported in three studies and only HSPA1A in four studies. Nevertheless, these 229 genes were associated with several immunological pathways including interleukin pathways related to type 2 and type 17 helper T cells and regulatory T cells. However, whether these pathways are involved in causing MS or related to secondary processes activated after disease onset remains to be investigated. The 229 genes were also compared with loci identified in published MS GWASs. Single nucleotide polymorphisms (SNP) in 17 of the 229 loci had been reported to be associated with MS with P-value less than 0.0001 including variants in CXCR4 and SAPS2, which were the only loci where evidence for correlation between the associated variant and gene expression was found. The CXCR4 variant was further tested for association with MS in a large case-control sample and the previously reported suggestive association was replicated (P-value is 0.0004). Finally, common genetic variants in candidate genes, which had been selected on the basis of showing association with other autoimmune diseases (MYO9B) or showing differential expression in MS in our study (DEFA1A3, LILRA4 and TNFRSF25), were tested for association with MS, but no evidence of association was found. In conclusion, through a systematic review of genome-wide expression studies in MS we have identified several promising candidate genes and pathways for future studies. In addition, we have replicated a previously suggested association of a SNP variant upstream of CXCR4 with MS. Keywords: autoimmune disease, common variant, CXCR4, DEFA1A3, HSPA1A,gene expression, genetic association, GWAS, MS, multiple sclerosis, systematic review

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Usher syndrome (USH) is an inherited blindness and deafness disorder with variable vestibular dysfunction. The syndrome is divided into three subtypes according to the progression and severity of clinical symptoms. The gene mutated in Usher syndrome type 3 (USH3), clarin 1 (CLRN1), was identified in Finland in 2001 and two mutations were identified in Finnish patients at that time. Prior to this thesis study, the two CLRN1 gene mutations were the only USH mutations identified in Finnish USH patients. To further clarify the Finnish USH mutation spectrum, all nine USH genes were studied. Seven mutations were identified: one was a previously known mutation in CLRN1, four were novel mutations in myosin VIIa (MYO7A) and two were a novel and a previously known mutation in usherin (USH2A). Another aim of this thesis research was to further study the structure and function of the CLRN1 gene, and to clarify the effects of mutations on protein function. The search for new splice variants resulted in the identification of eight novel splice variants in addition to the three splice variants that were already known prior to this study. Studies of the possible promoter regions for these splice variants showed the most active region included the 1000 bases upstream of the translation start site in the first exon of the main three exon splice variant. The 232 aa CLRN1 protein encoded by the main (three-exon) splice variant was transported to the plasma membrane when expressed in cultured cells. Western blot studies suggested that CLRN1 forms dimers and multimers. The CLRN1 mutant proteins studied were retained in the endoplasmic reticulum (ER) and some of the USH3 mutations caused CLRN1 to be unstable. During this study, two novel CLRN1 sequence alterations were identified and their pathogenicity was studied with cell culture protein expression. Previous studies with mice had shown that Clrn1 is expressed in mouse cochlear hair cells and spiral ganglion cells, but the expression profile in mouse retina remained unknown. The Clrn1 knockout mice display cochlear cell disruption/death, but do not have a retinal phenotype. The zebrafish, Danio rerio, clrn1 was found to be expressed in hair cells associated with hearing and balance. Clrn1 expression was also found in the inner nuclear layer (INL), photoreceptor layer and retinal pigment epithelium layer (RPE) of the zebrafish retina. When Clrn1 production was knocked down with injected morpholino oligonucleotides (MO) targeting Clrn1 translation or correct splicing, the zebrafish larvae showed symptoms similar to USH3 patients. These larvae had balance/hearing problems and reduced response to visual stimuli. The knowledge this thesis research has provided about the mutations in USH genes and the Finnish USH mutation spectrum are important in USH patient diagnostics. The extended information about the structure and function of CLRN1 is a step further in exploring USH3 pathogenesis caused by mutated CLRN1 as well as a step in finding a cure for the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With biotin labelled and unlabelled immunoglobulin fraction of anticysticercal antibodies raised in rabbits, tandem-enzyme linked immunosorbent assay (T-ELISA), capture-dot immunobinding assay (C-DIA) and reverse passive haemagglutination (RPHA) tests were developed for the detection of cysticercal antigens. The sensitivity levels were respectively, 9 ng ml−1, 2 ng ml−1 and 45 ng ml−1. All three methods were of equal specificity as none of the antigens of Mycobacterium tuberculosis, Japanese encephalitis virus and Echinococcus granulosus reacted with anticysticercal IgG. Cysticercal antigens were detected in the cerebrospinal fluid (CSF) of confirmed neurocysticercosis at sensitivity levels of 91·6% by T-ELISA, 83·33% by C-DIA and 75% by RPHA and specificity levels of >93%. Western analysis of these antigens in CSF showed mainly antigens of 64–68 kDa and 24–28 kDA. By crossed immunoelectrophoresis (CIE) with an intermediate gel technique, five circulating antigens were found to be released from scolex and fluid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a combination of avidin-biotin microELISA and solid phase radioimmunoassay, we examined sera from 23 patients with systemic lupus erythematosus (SLE), two patients with established sensitivity to ingested shrimp, and 15 healthy normal subjects. In addition to IgG antibodies, varying amounts of IgE antibodies specific for native DNA (nDNA), denatured or single-stranded DNA (dnDNA), RNA, and tRNA were demonstrable in the sera of SLE patients, but not in the sera of normal subjects. A comparison of the specificity of nucleic acid-specific IgE antibodies present in the sera of shrimp-sensitive patients with those present in the sera of seven SLE patients revealed that the IgE antibodies in the sera of shrimp-sensitive patients specifically recognized shrimp tRNA but not yeast tRNA, calf thymus RNA, or calf thymus DNA, while those present in the sera of patients with SLE recognized all these nucleic acid antigens. The IgE antibodies directed against nDNA, dnDNA, RNA, and tRNA may mediate mast cell and basophil degranulation and thus contribute both to immediate-type hypersensitivity phenomena including hives seen in patients with SLE and to the localization of IgE-nucleic acid complexes in target