989 resultados para HAMSTER OVARY CELLS
Resumo:
ABSTRACT: Rocio virus (ROCV) is an encephalitic flavivirus endemic to Brazil. Experimental flavivirus infections have previously demonstrated a persistent infection and, in this study, we investigated the persistence of ROCV infection in golden hamsters (Mesocricetus auratus). The hamsters were infected intraperitoneally with 9.8 LD50/0.02 mL of ROCV and later anaesthetised and sacrificed at various time points over a 120-day period to collect of blood, urine and organ samples. The viral titres were quantified by real-time-polymerase chain reaction (qRT-PCR). The specimens were used to infect Vero cells and ROCV antigens in the cells were detected by immunefluorescence assay. The levels of antibodies were determined by the haemagglutination inhibition technique. A histopathological examination was performed on the tissues by staining with haematoxylin-eosin and detecting viral antigens by immunohistochemistry (IHC). ROCV induced a strong immune response and was pathogenic in hamsters through neuroinvasion. ROCV was recovered from Vero cells exposed to samples from the viscera, brain, blood, serum and urine and was detected by qRT-PCR in the brain, liver and blood for three months after infection. ROCV induced histopathological changes and the expression of viral antigens, which were detected by IHC in the liver, kidney, lung and brain up to four months after infection. These findings show that ROCV is pathogenic to golden hamsters and has the capacity to cause persistent infection in animals after intraperitoneal infection.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Contents The aim of this study was to determine the effect of temporary inhibition of meiosis using the cyclin-dependent kinase inhibitor butyrolactone I (BLI) on gene expression in bovine oocytes and cumulus cells. Immature bovine cumulusoocyte complexes (COCs) were assigned to groups: (i) Control COCs collected immediately after recovery from the ovary or (ii) after in vitro maturation (IVM) for 24 h, (iii) Inhibited COCs collected 24 h after incubation with 100 mu m BLI or (iv) after meiotic inhibition for 24 h followed by IVM for a further 22 h. For mRNA relative abundance analysis, pools of 10 denuded oocytes and respective cumulus cells were collected. Transcripts related to cell cycle regulation and oocyte competence were evaluated in oocytes and cumulus cells by quantitative real-time PCR (qPCR). Most of the examined transcripts were downregulated (p < 0.05) after IVM in control and inhibited oocytes (19 of 35). Nine transcripts remained stable (p > 0.05) after IVM in control oocytes; only INHBA did not show this pattern in inhibited oocytes. Seven genes were upregulated after IVM in control oocytes (p < 0.05), and only PLAT, RBP1 and INHBB were not upregulated in inhibited oocytes after IVM. In cumulus cells, six genes were upregulated (p < 0.05) after IVM and eight were downregulated (p < 0.05). Cells from inhibited oocytes showed the same pattern of expression regarding maturation profile, but were affected by the temporary meiosis inhibition of the oocyte when the same maturation stages were compared between inhibited and control groups. In conclusion, changes in transcript abundance in oocytes and cumulus cells during maturation in vitro were mostly mirrored after meiotic inhibition followed by maturation.
Resumo:
Vitellogenin (Vg) is an egg yolk protein that is produced primarily in the fat body of most female insects. In the advanced social structure of eusocial honeybees, the presence of the queen inhibits egg maturation in the workers ovaries. However in the stingless bee Melipona quadrifasciata, the workers always develop ovaries and lay a certain amount of eggs while provisioning the brood cells with larval food during what is known as the worker nurse phase. The present work is a comparative study of the presence of Vg in homogenates of the fat bodies and ovaries of the nurse workers, and the virgin and physogastric queens of M. quadrifasciata. The presence of Vg was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunoblotting using Apis mellifera anti-egg antibody. Vg was not detected in the fat bodies or ovaries of the workers, but it was found in the ovaries of virgin and physogastric queens and in the fat body of physogastric queens. The results are discussed, taking into account the reproductive state of the individuals and the other possible roles of Vg, such as a storage protein for metoabolism of other organs.
Resumo:
We evaluated how the mild stress-induced increase in endogenous corticosterone affected the pineal gland in Syrian hamsters (Mesocricetus auratus). The animals were maintained under constant light for 1 day, instead of a cycle of 14:10-h, to increase the circulating corticosterone levels during the daytime. The nuclear translocation of nuclear factor kappa B (NFKB), which is the pivotal transcription factor for stress and injury, presented a daily rhythm in normal animals. NFKB nuclear content increased linearly from the onset of light [Zeitgeber Time 0 (ZT0)] until ZT11 and decreased after ZT12 when the plasma corticosterone peak was detected in normal animals. However, the 24-h profiles of the two curves were different, and they did not clearly support an exclusive relationship between corticosterone levels and NFKB content. Therefore, we tested the effect of increased endogenous corticosterone through inducing mild stress by maintaining daytime illumination for one night. This stressful condition, which increased daytime corticosterone levels, resulted in a daytime decrease in NFKB nuclear content, and this was inhibited by mifepristone. Overall, this study shows that NFKB has a daily rhythm in Syrian hamster pineal glands and, by increasing endogenous corticosterone with a stressful condition, NFKB activity is regulated. Therefore, this study suggests that the pineal gland in the Syrian hamster is a sensor of stressful conditions.
Resumo:
Solanum lycocarpum St.-Hil (Solanaceae) is a hairy shrub or small much-branched tree of the Brazilian Cerrado, popularly known as "fruit-of-wolf". Considering that the induction of chromosomal mutations is involved in the process of carcinogenesis, and that S. lycocatpum is often used in folk medicine, it becomes relevant to study its effect on genetic material. In this sense, the aim of present study was to determine the possible cytotoxic, genotoxic and antigenotoxic potentials of S. lycocarpum fruits glycoalkaloid extract (SL) in Chinese hamster lung fibroblasts (V79 cells). The cytotoxicity was evaluated by the colony forming assay, apoptosis and necrosis assay. Trypan blue exclusion dye method and mitotic index. Genotoxic and antigenotoxic potential were evaluated by comet and chromosomal aberrations assays. Four concentrations of SL (4, 8, 16 and 32 mu g/mL) were used for the evaluation of its genotoxic potential. The DNA damage-inducing agent methyl methanesulfonate (MMS, 221 mu g/mL) was utilized in combination with extract to evaluate a possible protective effect. The results showed that SL was cytotoxic at concentrations above 32 mu g/mL by the colony forming assay. For apoptosis and necrosis assay, the concentration of 64 mu g/mL of SL showed statistically significant increase in cell death by apoptosis and necrosis, while the concentrations of 128 and 256 mu g/mL of SL demonstrated statistically significant increase in cell death by necrosis, compared with the control group. Analysis of cell viability by Trypan blue exclusion indicated >96% viability for treatments with concentrations up to 32 mu g/mL of SL No significant differences in MI were observed between cultures treated with different concentrations of 51 (4, 8, 16 and 32 mu g/mL) alone or in combination with MMS and the negative control, indicating that these treatments were not cytotoxic. The comet and chromosomal aberrations assays revealed that SL does not display genotoxic activity. Moreover, the different concentrations of SL showed protective effect against both genomic and chromosomal damages induced by MMS. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Background: Since noradrenergic innervation was described in the ovarian follicle, the actions of the intraovarian catecholaminergic system have been the focus of a variety of studies. We aimed to determine the gonadotropin-independent effects of the catecholamine norepinephrine (NE) in the steroid hormone profile of a serum-free granulosa cell (GC) culture system in the context of follicular development and dominance. Methods: Primary bovine GCs were cultivated in a serum-free, chemically defined culture system supplemented with 0.1% polyvinyl alcohol. The culture features were assessed by hormone measurements and ultrastructural characteristics of GCs. Results: GCs produced increasing amounts of estradiol and pregnenolone for 144h and maintained ultrastructural features of healthy steroidogenic cells. Progesterone production was also detected, although it significantly increased only after 96h of culture. There was a highly significant positive correlation between estradiol and pregnenolone production in high E2-producing cultures. The effects of NE were further evaluated in a dose response study. The highest tested concentration of NE (10 (-7) M) resulted in a significant increase in progesterone production, but not in estradiol or pregnenolone production. The specificity of NE effects on progesterone productio n was further investigated by incubating GCs with propranolol (10 (-8) M), a non-selective beta-adrenergic antagonist. Conclusions: The present culture system represents a robust model to study the impact of intrafollicular factors, such as catecholamines, in ovarian steroidogenesis and follicular development. The results of noradrenergic effects in the steroidogenesis of GC have implications on physiological follicular fate and on certain pathological ovarian conditions such as cyst formation and anovulation.
Resumo:
BACKGROUND AND PURPOSE Independent studies in experimental models of Trypanosoma cruzi appointed different roles for endothelin-1 (ET-1) and bradykinin (BK) in the immunopathogenesis of Chagas disease. Here, we addressed the hypothesis that pathogenic outcome is influenced by functional interplay between endothelin receptors (ETAR and ETBR) and bradykinin B2 receptors (B2R). EXPERIMENTAL APPROACH Intravital microscopy was used to determine whether ETR/B2R drives the accumulation of rhodamine-labelled leucocytes in the hamster cheek pouch (HCP). Inflammatory oedema was measured in the infected BALB/c paw of mice. Parasite invasion was assessed in CHO over-expressing ETRs, mouse cardiomyocytes, endothelium (human umbilical vein endothelial cells) or smooth muscle cells (HSMCs), in the presence/absence of antagonists of B2R (HOE-140), ETAR (BQ-123) and ETBR (BQ-788), specific IgG antibodies to each GPCRs; cholesterol or calcium-depleting drugs. RNA interference (ETAR or ETBR genes) in parasite infectivity was investigated in HSMCs. KEY RESULTS BQ-123, BQ-788 and HOE-140 reduced leucocyte accumulation in HCP topically exposed to trypomastigotes and blocked inflammatory oedema in infected mice. Acting synergistically, ETAR and ETBR antagonists reduced parasite invasion of HSMCs to the same extent as HOE-140. Exogenous ET-1 potentiated T. cruzi uptake by HSMCs via ETRs/B2R, whereas RNA interference of ETAR and ETBR genes conversely reduced parasite internalization. ETRs/B2R-driven infection in HSMCs was reduced in HSMC pretreated with methyl-beta-cyclodextrin, a cholesterol-depleting drug, or in thapsigargin-or verapamil-treated target cells. CONCLUSIONS AND IMPLICATIONS Our findings suggest that plasma leakage, a neutrophil-driven inflammatory response evoked by trypomastigotes via the kinin/endothelin pathways, may offer a window of opportunity for enhanced parasite invasion of cardiovascular cells.
Resumo:
OBJECTIVE: Formaldehyde exposure during the menstrual cycle is known to affect the course of allergic lung inflammation. Because our previous data demonstrated that formaldehyde combined with an ovariectomy reduced allergic lung inflammation, we investigated the putative role of ovary removal and progesterone treatment when considering the effect of formaldehyde on allergic lung inflammation. METHOD: Ovariectomized rats and their matched controls were exposed to formaldehyde (1%, 3 days, 90 min/day) or vehicle, and immediately after exposure, the rats were sensitized to ovalbumin by a subcutaneous route. After 1 week, the rats received a booster by the same route, and after an additional week, the rats were challenged with ovalbumin (1%) by an aerosol route. The leukocyte numbers, interleukin-10 (IL-10) release, myeloperoxidase activity, vascular permeability, ex vivo tracheal reactivity to methacholine and mast cell degranulation were determined 24 h later. RESULTS: Our results showed that previous exposure to formaldehyde in allergic rats decreased lung cell recruitment, tracheal reactivity, myeloperoxidase activity, vascular permeability and mast cell degranulation while increasing IL-10 levels. Ovariectomy only caused an additional reduction in tracheal reactivity without changing the other parameters studied. Progesterone treatment reversed the effects of formaldehyde exposure on ex vivo tracheal reactivity, cell influx into the lungs and mast cell degranulation. CONCLUSION: In conclusion, our study revealed that formaldehyde and ovariectomy downregulated allergic lung inflammation by IL-10 release and mast cell degranulation. Progesterone treatment increased eosinophil recruitment and mast cell degranulation, which in turn may be responsible for tracheal hyperreactivity and allergic lung inflammation
Resumo:
Thiazolidinediones (TZDs) such as pioglitazone and rosiglitazone are widely used as insulin sensitizers in the treatment of type 2 diabetes. In diabetic women with polycystic ovary syndrome, treatment with pioglitazone or rosiglitazone improves insulin resistance and hyperandrogenism, but the mechanism by which TZDs down-regulate androgen production is unknown. Androgens are synthesized in the human gonads as well as the adrenals. We studied the regulation of androgen production by analyzing the effect of pioglitazone and rosiglitazone on steroidogenesis in human adrenal NCI-H295R cells, an established in vitro model of steroidogenesis of the human adrenal cortex. Both TZDs changed the steroid profile of the NCI-H295R cells and inhibited the activities of P450c17 and 3betaHSDII, key enzymes of androgen biosynthesis. Pioglitazone but not rosiglitazone inhibited the expression of the CYP17 and HSD3B2 genes. Likewise, pioglitazone repressed basal and 8-bromo-cAMP-stimulated activities of CYP17 and HSD3B2 promoter reporters in NCI-H295R cells. However, pioglitazone did not change the activity of a cAMP-responsive luciferase reporter, indicating that it does not influence cAMP/protein kinase A/cAMP response element-binding protein pathway signaling. Although peroxisome proliferator-activated receptor gamma (PPARgamma) is the nuclear receptor for TZDs, suppression of PPARgamma by small interfering RNA technique did not alter the inhibitory effect of pioglitazone on CYP17 and HSD3B2 expression, suggesting that the action of pioglitazone is independent of PPARgamma. On the other hand, treatment of NCI-H295R cells with mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) inhibitor 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD98059) enhanced promoter activity and expression of CYP17. This effect was reversed by pioglitazone treatment, indicating that the MEK/ERK signaling pathway plays a role in regulating androgen biosynthesis by pioglitazone.
Resumo:
Awake hamsters equipped with the dorsal window chamber preparation were subjected to hemorrhage of 50% of the estimated blood volume. Initial resuscitation (25% of estimated blood volume) with polymerized bovine hemoglobin (PBH) or 10% hydroxyethyl starch (HES) occurred in concert with an equivolumetric bleeding to simulate the early, prehospital setting (exchange transfusion). Resuscitation (25% of estimated blood volume) without bleeding was performed with PBH, HES, or autologous red blood cells (HES-RBCs). Peripheral microcirculation, tissue oxygenation, and systemic hemodynamic and blood gas parameters were assessed. After exchange transfusion, base deficit was -8.6 +/- 3.7 mmol/L (PBH) and -5.1 +/- 5.3 mmol/L (HES) (not significant). Functional capillary density was 17% +/- 6% of baseline (PBH) and 31% +/- 11% (HES) (P < 0.05) and arteriolar diameter 73% +/- 3% of baseline (PBH) and 90% + 5% (HES) (P < 0.01). At the end, hemoglobin levels were 3.7 +/- 0.3 g/dL with HES, 8.2 +/- 0.6 g/dL with PBH, and 10.4 +/- 0.8 g/dL with HES-RBCs (P < 0.01 HES vs. PBH and HES-RBCs, P < 0.05 PBH vs. HES-RBCs). Base excess was restored to baseline with PBH and HES-RBCs, but not with HES (P < 0.05). Functional capillary density was 46% +/- 5% of baseline (PBH), 62% + 20% (HES-RBCs), and 36% +/- 19% (HES) (P < 0.01 HES-RBCs vs. HES). Peripheral oxygen delivery and consumption was highest with HES-RBCs, followed by PBH (P < 0.05 HES-RBCs vs. PBH, P < 0.01 HES-RBCs and PBH vs. HES). In conclusion, the PBH led to a correction of base deficit comparable to blood transfusion. However, oxygenation of the peripheral tissue was inferior with PBH. This was attributed to its negative impact on the peripheral microcirculation caused by arteriolar vasoconstriction.
Resumo:
OBJECTIVES: The aim of this study was to investigate the effect of a highly viscous, left-shifted hemoglobin vesicle solution (HbV) on the hypoxia-related inflammation and the microcirculation in critically ischemic peripheral tissue. DESIGN: Randomized prospective study. SETTING: University laboratory. SUBJECTS: Twenty-four male golden Syrian hamsters. INTERVENTIONS: Island flaps were dissected from the back skin of anesthetized hamsters for assessment with intravital microscopy. The flap included a critically ischemic, hypoxic area that was perfused via a collateralized vasculature. One hour after completion of the preparation, the animals received an injection of 25% of total blood volume of 0.9% NaCl or NaCl suspended with HbVs at a concentration of 5 g/dL (HbV5) or 10 g/dL (HbV10). MEASUREMENTS AND MAIN RESULTS: Plasma viscosity was increased from 1.32 cP to 1.61 cP and 2.14 cP after the administration of HbV5 and HbV10, respectively (both p < .01). Both HbV solutions raised partial oxygen tension (Clark-type microprobes) in the ischemic tissue from approximately 10 torr to 17 torr (p < .01), which was paralleled by an increase in capillary perfusion by > 200% (p < .01). The 50% increase in macromolecular capillary leakage found over time in the control animals was completely abolished by the HbV solutions (p < .01), which was accompanied by a > 50% (p < .01) reduction in cells immunohistochemically stained for tumor necrosis factor-alpha and interleukin-6 and in leukocyte counts, whereas no such changes were observed in the anatomically perfused, normoxic tissue. CONCLUSIONS: Our study suggests that in critically ischemic, hypoxic peripheral tissue, hypoxia-related inflammation may be reduced by a top-load infusion of HbV solutions. We attributed this effect to a restoration of tissue oxygenation and an increase in plasma viscosity, both of which may have resulted in attenuation of secondary microcirculatory impairments.
Resumo:
Cell adhesion is a fundamentally important process which has been implicated in morphogenesis, metastasis and wound healing. Fibronectin (Fn), a large glycoprotein present in body fluids, the extracellular matrix, and on the cell surface, mediates adhesion of fibroblastic cells. To study the interaction of Fn with Chinese Hamster Cell (CHO) cell membranes, latex beads coated with H('3)-Fn (Fn-beads) were used as surface probes. Binding of Fn-beads was independent of temperature, divalent cations, and metabolic activity. Identification of fibronectin-receptors has been problematical. To study Fn binding components, Fn-beads were pre-incubated with purified glycosaminoglycans (GAGs) and glycolipids. Among the GAGs tested, heparin and heparan sulfate blocked bead binding. Only sialylated glycolipids, GT(,1) and GD(,1) were inhibitory; however, neuraminidase treatment of cells had no effect. It was further shown that Fn-bead binding could be blocked by pre-treating cells with papain. Furthermore, papain digestion releases cellular material which blocks Fn-bead-cell binding. Beads coated with a fragment of Fn which binds to cells but not heparin (F105) were also blocked by soluble papain digests. It was observed that the ability of F105-beads to bind to CHO cells was dependent on surface charge as F105 on uncharged beads did not bind to cells; whereas, F105 on positive or negative beads displayed cell binding activity. The active component in the papain digests was apparently macromolecular (i.e. non-dialysable) and heat stable (i.e. 100(DEGREES)C for 15 min.). This suggested the inhibitory factor is more likely a glycopeptide, rather than a GAG or glycolipid. The findings of this research can be summarized as follows: (1) the expression of cell binding of Fn and Fn fragments can be modulated by the chemical nature of the surface used for adsorption; (2) factors can be released by proteolytic digestion which block Fn and Fn-fragment bead binding; and (3) since bead binding can be done under conditions which reflect initial Fn-cell interaction, it seems likely that the component(s) identified in this way may play a direct role in the recognition phases of cell adhesion to Fn. ^