910 resultados para Greenhouse gas fluxes
Resumo:
The 21st century will see monumental change. Either the human race will use its knowledge and skills and change the way it interacts with the environment, or the environment will change the way it interacts with its inhabitants. In the first case, the focus of this book, we would see our sophisticated understanding in areas such as physics, chemistry, engineering, biology, planning, commerce, business and governance accumulated over the last 1,000 years brought to bear on the challenge of dramatically reducing our pressure on the environment. The second case however is the opposite scenario, involving the decline of the planet’s ecosystems until they reach thresholds where recovery is not possible, and following which we have no idea what happens. For instance, if we fail to respond to Sir Nicolas Stern’s call to meet appropriate stabilisation trajectories for greenhouse gas emissions, and we allow the average temperature of our planets surface to increase by 4-6 degrees Celsius, we will see staggering changes to our environment, including rapidly rising sea level, withering crops, diminishing water reserves, drought, cyclones, floods… allowing this to happen will be the failure of our species, and those that survive will have a deadly legacy. In this update to the 1997 International Best Seller, Factor Four, Ernst von Weizsäcker again leads a team to present a compelling case for sector wide advances that can deliver significant resource productivity improvements over the coming century. The purpose of this book is to inspire hope and to then inform meaningful action in the coming decades to respond to the greatest challenge our species has ever faced – that of living in harmony with our planet and its other inhabitants.
Resumo:
The focus of Cents and Sustainability is to respond to the call by Dr Gro Brundtland in the seminal book Our Common Future to achieve, 'a new era of economic growth - growth that is forceful and at the same time socially and environmentally sustainable'. With the 20th anniversary of Our Common Future in 2007, it is clearly time to re-examine this important work in a modern global context. Using the framework of ‘Decoupling Economic Growth from Environmental Pressures’, Cents and Sustainability investigates a range of new evidence and research in order to develop a deeper understanding of how, and under what conditions, this 'forceful sustainable growth' is possible. With an introduction by Dr Jim MacNeill (former Secretary General to the Brundtland Commission, and former Director, OECD Environment Directorate 1978 -1984), the book will carry forewords from Dr Gro Brundtland (former Chair of the World Commission on Environment and Development), Dr Rajendra Pachauri (Chief, Intergovernmental Panel on Climate Change (IPCC), and joint recipient of the 2007 Nobel Peace Prize on behalf of the IPCC), and Dr Kenneth Ruffing (former Deputy Director and Chief Economist of the OECD Environment Directorate 2000 - 2005). Beginning with a detailed explanation of decoupling theory, along with investigation into a range of issues and barriers to its achievement, the book then focuses on informing national strategies for decoupling. Then putting this into action the book focuses on five key areas of decoupling, namely greenhouse gas emissions, biodiversity, freshwater extraction, waste production, and air pollution, and in each case showing compelling evidence for significant cost effective reductions in environmental pressures. The book concludes with a detailed case study of the groundbreaking application of public interest litigation to combat air pollution in Delhi, India.
Resumo:
Global pressures of burgeoning population growth and consumption are threatening efforts to reduce negative environmental pressures associated with development such as atmospheric, land and water pollution. For example, the world’s population is now growing at over 70 million per year or 1 billion per decade (Brown, 2007), increasing from 3.5 billion in 1970, to 5 billion in 1990, to 7 billion by 2010 (United Nations, 2002). In 1990 only 13 percent of the global population lived in cities, while in 2007 more than half did. More than 60 percent of the global population lives within 100 kilometers of the coastline (World Resources Institute, 2005) and nearly all of the population growth hereon is forecast to happen in developing countries (Postel, 1999). Future levels of stress on the global environment are therefore likely to increase if current trends are used for forecasting, which is particularly challenging as scientists are already observing significant signs of degradation and failure in environmental systems. For example, the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC, 2007) provided an nequivocal link between climate change and current human activities, in particular: the burning of fossil fuels; deforestation and land clearing; the use of synthetic greenhouse gases; and decomposition of wastes from landfill. The UK Stern Review concluded that within our lifetime there is between a 77 to 99 percent chance (depending on the climate model used) of the global average temperature rising by more than 2 degrees Celsius (Stern, 2006), with a likely greenhouse gas concentration in the atmosphere of 550 parts per million (ppm) or more by around 2100.
Resumo:
With increasing signs of climate change and the influence of national and international carbon-related laws and agreements, governments all over the world are grappling with how to rapidly transition to low-carbon living. This includes adapting to the impacts of climate change that are very likely to be experienced due to current emission levels (including extreme weather and sea level changes), and mitigating against further growth in greenhouse gas emissions that are likely to result in further impacts. Internationally, the concept of ‘Biophilic Urbanism’, a term coined by Professors Tim Beatley and Peter Newman to refer to the use of natural elements as design features in urban landscapes, is emerging as a key component in addressing such climate change challenges in rapidly growing urban contexts. However, the economics of incorporating such options is not well understood and requires further attention to underpin a mainstreaming of biophilic urbanism. Indeed, there appears to be an ad hoc, reactionary approach to creating economic arguments for or against the design, installation or maintenance of natural elements such as green walls, green roofs, streetscapes, and parklands. With this issue in mind, this paper will overview research as part of an industry collaborative research project that considers the potential for using a number of environmental economic valuation techniques that have evolved over the last several decades in agricultural and resource economics, to systematically value the economic value of biophilic elements in the urban context. Considering existing literature on environmental economic valuation techniques, the paper highlights opportunities for creating a standardised language for valuing biophilic elements. The conclusions have implications for expanding the field of environmental economic value to support the economic evaluations and planning of the greater use of natural elements in cities. Insights are also noted for the more mature fields of agricultural and resource economics.
Resumo:
A significant reduction in global greenhouse gas (GHG) emissions is a priority, and the preservation of existing building stock presents a significant opportunity to reduce the carbon footprint of our built environment. Within this ‘wicked’ problem context, and moving beyond the ad hoc and incremental performance improvements that have been made to date, collaborative and multidisciplinary efforts are required to find rapid and transformational solutions. Design has emerged as a strategic and redirective practice, and lessons can therefore be learned about transformation and potentially applied in the built environment. The purpose of this paper is to discuss a pragmatic and novel research approach for undertaking such applied design driven research. This paper begins with a discussion of key contributions from design science (rational) and action research (reflective) philosophies in creating an emerging methodological ‘hybrid design approach’. This research approach is then discussed in relation to its application to specific research exploring the processes, methods and lessons from design in heritage building retrofit projects. Drawing on both industry and academic knowledge to ensure relevance and rigour, it is anticipated that the hybrid design approach will be useful for others tackling such complex wicked problems that require context-specific solutions.
Resumo:
Given the increased importance of adaptation debates in global climate negotiations, pressure to achieve biodiversity, food and water security through managed landscape-scale adaptation will likely increase across the globe over the coming decade. In parallel, emerging market-based, terrestrial greenhouse gas abatement programs present a real opportunity to secure such adaptation to climate change through enhanced landscape resilience. Australia has an opportunity to take advantage of such programs through regional planning aspects of its governance arrangements for NRM. This paper explores necessary reforms to Australia's regional NRM planning systems to ensure that they will be better able to direct the nation's emerging GGA programs to secure enhanced landscape adaptation. © 2013 Planning Institute Australia.
Resumo:
In this paper we discuss the social, economic and institutional aspects of the development of carbon management systems within Australia's tropical savannas. Land-use values in savanna landscapes are changing as a result of changing economic markets, greater recognition of native title, and growing social demands and expectations for tourism, recreation and conservation. In addition, there is increasing interest in developing markets and policy arrangements for greenhouse gas abatement, carbon sequestration and carbon trade in savannas. We argue that for carbon management to lead to national greenhouse outcomes, attention must be paid to social, economic and institutional issues in environmental planning and policy arrangements. From an economic perspective, the financial impact of carbon management on savanna enterprises will depend on appropriate and available policy mechanisms, unit price for carbon, landscape condition, existing management strategies and abatement measurements used. Local social and cultural features of communities and regions may enhance or constrain the implementation of carbon abatement strategies, depending on how they are perceived. In terms of institutional arrangements, policies and plans must support and enable carbon management. We identify three areas that require priority investigation and adjustment: regional planning arrangements, property rights, and rules for accounting at enterprise and regional scales. We conclude that the best potential for managing for carbon will be achieved while managing for range of other natural resource management outcomes, especially where managing for carbon delivers collateral benefits to enterprises.
Resumo:
Providing mobility corridors for communities, enabling freight networks to transport goods and services, and a pathway for emergency services and disaster relief operations, roads are a vital component of our societal system. In the coming decades, a number of modern issues will face road agencies as a result of climate change, resource scarcity and energy related challenges that will have implications for society. To date, these issues have been discussed on a case by case basis, leading to a fragmented approach by state and federal agencies in considering the future of roads – with potentially significant cost and risk implications. Within this context, this paper summarises part of a research project undertaken within the ‘Greening the Built Environment’ program of the Sustainable Built Environment National Research Centre (SBEnrc, Australia), which identified key factors or ‘trends’ affecting the future of roads and key strategies to ensure that road agencies can continue to deliver road infrastructure that meets societal needs in an environmentally appropriate manner. The research was conducted over two years, including a review of academic and state agency literature, four stakeholder workshops in Western Australia and Queensland, and industry consultation. The project was supported financially and through peer review and contribution, by Main Roads Western Australia, QLD Department of Transport and Main Roads, Parsons Brinckerhoff, John Holland Group, and the Australian Green Infrastructure Council (AGIC). The project highlighted several potential trends that are expected to affect road agencies in the future, including predicted resource and materials shortages, increases in energy and natural resources prices, increased costs related to greenhouse gas emissions, changing use and expectations of roads, and changes in the frequency and intensity of weather events. Exploring the implications of these potential futures, the study then developed a number of strategies in order to prepare transport agencies for the associated risks that such trends may present. An unintended outcome of the project was the development of a process for enquiring into future scenarios, which will be explored further in Stage 2 of the project (2013-2014). The study concluded that regardless of the type and scale of response by the agency, strategies must be holistic in approach, and remain dynamic and flexible.
Resumo:
Global climate change is one of the most significant environmental issues that can harm human development. One central issue for the building and construction industry to address global climate change is the development of a credible and meaningful way to measure greenhouse gas (GHG) emissions. While Publicly Available Specification (PAS) 2050, the first international GHG standard, has been proven to be successful in standardizing the quantification process, its contribution to the management of carbon labels for construction materials is limited. With the recent publication of ISO 14067: Greenhouse gases – carbon footprint of products – requirements and guidelines for quantification and communication in May 2013, it is necessary for the building and construction industry to understand the past, present and future of the carbon labelling practices for construction materials. A systematic review shows that international GHG standards have been evolving in terms of providing additional guidance on communication and comparison, as well as less flexibility on the use of carbon labels. At the same time, carbon labelling schemes have been evolving on standardization and benchmarking. In addition, future actions are needed in the aspect of raising consumer awareness, providing benchmarking, ensuring standardization and developing simulation technologies in order for carbon labelling schemes for construction materials to provide credible, accurate and transparent information on GHG emissions.
Resumo:
Numerous initiatives have been employed around the world in order to address rising greenhouse gas (GHG) emissions originating from the transport sector. These measures include: travel demand management (congestion‐charging), increased fuel taxes, alternative fuel subsidies and low‐emission vehicle (LEV) rebates. Incentivizing the purchase of LEVs has been one of the more prevalent approaches in attempting to tackle this global issue. LEVs, whilst having the advantage of lower emissions and, in some cases, more efficient fuel consumption, also bring the downsides of increased purchase cost, reduced convenience of vehicle fuelling, and operational uncertainty. To stimulate demand in the face of these challenges, various incentive‐based policies, such as toll exemptions, have been used by national and local governments to encourage the purchase of these types of vehicles. In order to address rising GHG emissions in Stockholm, and in line with the Swedish Government’s ambition to operate a fossil free fleet by 2030, a number of policies were implemented targeting the transport sector. Foremost amongst these was the combination of a congestion charge – initiated to discourage emissions‐intensive travel – and an exemption from this charge for some LEVs, established to encourage a transition towards a ‘green’ vehicle fleet. Although both policies shared the aim of reducing GHG emissions, the exemption for LEVs carried the risk of diminishing the effectiveness of the congestion charging scheme. As the number of vehicle owners choosing to transition to an eligible LEV increased, the congestion‐reduction effectiveness of the charging scheme weakened. In fact, policy makers quickly recognized this potential issue and consequently phased out the LEV exemption less than 18 months after its introduction (1). Several studies have investigated the demand for LEVs through stated‐preference (SP) surveys across multiple countries, including: Denmark (2), Germany (3, 4), UK (5), Canada (6), USA (7, 8) and Australia (9). Although each of these studies differed in approach, all involved SP surveys where differing characteristics between various types of vehicles, including LEVs, were presented to respondents and these respondents in turn made hypothetical decisions about which vehicle they would be most likely to purchase. Although these studies revealed a number of interesting findings in regards to the potential demand for LEVs, they relied on SP data. In contrast, this paper employs an approach where LEV choice is modelled by taking a retrospective view and by using revealed preference (RP) data. By examining the revealed preferences of vehicle owners in Stockholm, this study overcomes one of the principal limitations of SP data, namely that stated preferences may not in fact reflect individuals’ actual choices, such as when cost, time, and inconvenience factors are real rather than hypothetical. This paper’s RP approach involves modelling the characteristics of individuals who purchased new LEVs, whilst estimating the effect of the congestion charging exemption upon choice probabilities and subsequent aggregate demand. The paper contributes to the current literature by examining the effectiveness of a toll exemption under revealed preference conditions, and by assessing the total effect of the policy based on key indicators for policy makers, including: vehicle owner home location, commuting patterns, number of children, age, gender and income. Extended Abstract Submission for Kuhmo Nectar Conference 2014 2 The two main research questions motivating this study were: Which individuals chose to purchase a new LEV in Stockholm in 2008?; and, How did the congestion charging exemption affect the aggregate demand for new LEVs in Stockholm in 2008? In order to answer these research questions the analysis was split into two stages. Firstly, a multinomial logit (MNL) model was used to identify which demographic characteristics were most significantly related to the purchase of an LEV over a conventional vehicle. The three most significant variables were found to be: intra‐cordon residency (positive); commuting across the cordon (positive); and distance of residence from the cordon (negative). In order to estimate the effect of the exemption policy on vehicle purchase choice, the model included variables to control for geographic differences in preferences, based on the location of the vehicle owners’ homes and workplaces in relation to the congestion‐charging cordon boundary. These variables included one indicator representing commutes across the cordon and another indicator representing intra‐cordon residency. The effect of the exemption policy on the probability of purchasing LEVs was estimated in the second stage of the analysis by focusing on the groups of vehicle owners that were most likely to have been affected by the policy i.e. those commuting across the cordon boundary (in both directions). Given the inclusion of the indicator variable representing commutes across the cordon, it is assumed that the estimated coefficient of this variable captures the effect of the exemption policy on the utility of choosing to purchase an exempt LEV for these two groups of vehicle owners. The intra‐cordon residency indicator variable also controls for differences between the two groups, based upon direction of travel across the cordon boundary. A counter‐hypothesis to this assumption is that the coefficient of the variable representing commuting across the cordon boundary instead only captures geo‐demographic differences that lead to variations in LEV ownership across the different groups of vehicle owners in relation to the cordon boundary. In order to address this counter‐hypothesis, an additional analysis was performed on data from a city with a similar geodemographic pattern to Stockholm, Gothenburg ‐ Sweden’s second largest city. The results of this analysis provided evidence to support the argument that the coefficient of the variable representing commutes across the cordon was capturing the effect of the exemption policy. Based upon this framework, the predicted vehicle type shares were calculated using the estimated coefficients of the MNL model and compared with predicted vehicle type shares from a simulated scenario where the exemption policy was inactive. This simulated scenario was constructed by setting the coefficient for the variable representing commutes across the cordon boundary to zero for all observations to remove the utility benefit of the exemption policy. Overall, the procedure of this second stage of the analysis led to results showing that the exemption had a substantial effect upon the probability of purchasing and aggregate demand for exempt LEVs in Stockholm during 2008. By making use of unique evidence of revealed preferences of LEV owners, this study identifies the common characteristics of new LEV owners and estimates the effect of Stockholm's congestion charging exemption upon the demand for new LEVs during 2008. It was found that the variables that had the greatest effect upon the choice of purchasing an exempt LEV included intra‐cordon residency (positive), distance of home from the cordon (negative), and commuting across the cordon (positive). It was also determined that owners under the age of 30 years preferred non‐exempt LEVs (low CO2 LEVs), whilst those over the age of 30 years preferred electric vehicles. In terms of electric vehicles, it was apparent that those individuals living within the city had the highest propensity towards purchasing this vehicle type. A negative relationship between choosing an electric vehicle and the distance of an individuals’ residency from the cordon was also evident. Overall, the congestion charging exemption was found to have increased the share of exempt LEVs in Stockholm by 1.9%, with, as expected, a much stronger effect on those commuting across the boundary, with those living inside the cordon having a 13.1% increase, and those owners living outside the cordon having a 5.0% increase. This increase in demand corresponded to an additional 538 (+/‐ 93; 95% C.I.) new exempt LEVs purchased in Stockholm during 2008 (out of a total of 5 427; 9.9%). Policy makers can take note that an incentive‐based policy can increase the demand for LEVs and appears to be an appropriate approach to adopt when attempting to reduce transport emissions through encouraging a transition towards a ‘green’ vehicle fleet.
Resumo:
Carbon nanotips have been synthesized from a thin carbon film deposited on silicon by bias-enhanced hot filament chemical vapor deposition under different process parameters. The results of scanning electron microscopy indicate that high-quality carbon nanotips can only be obtained under conditions when the ion flux is effectively drawn from the plasma sustained in a CH4 + NH3 + H2 gas mixture. It is shown that the morphology of the carbon nanotips can be controlled by varying the process parameters such as the applied bias, gas pressure, and the NH3 / H2 mass flow ratios. The nanotip formation process is examined through a model that accounts for surface diffusion, in addition to sputtering and deposition processes included in the existing models. This model makes it possible to explain the major difference in the morphologies of the carbon nanotips formed without and with the aid of the plasma as well as to interpret the changes of their aspect ratio caused by the variation in the ion/gas fluxes. Viable ways to optimize the plasma-based process parameters to synthesize high-quality carbon nanotips are suggested. The results are relevant to the development of advanced plasma-/ion-assisted methods of nanoscale synthesis and processing.
Resumo:
A theoretical model to describe the plasma-assisted growth of carbon nanofibers (CNFs) is proposed. Using the model, the plasma-related effects on the nanofiber growth parameters, such as the growth rate due to surface and bulk diffusion, the effective carbon flux to the catalyst surface, the characteristic residence time and diffusion length of carbon atoms on the catalyst surface, and the surface coverages, have been studied. The dependence of these parameters on the catalyst surface temperature and ion and etching gas fluxes to the catalyst surface is quantified. The optimum conditions under which a low-temperature plasma environment can benefit the CNF growth are formulated. These results are in good agreement with the available experimental data on CNF growth and can be used for optimizing synthesis of related nanoassemblies in low-temperature plasma-assisted nanofabrication. © 2008 American Institute of Physics.
Resumo:
A theoretical model describing the plasma-assisted growth of carbon nanofibres (CNFs) that accounts for the nanostructure heating by ion and etching gas fluxes from the plasma is developed. Using the model, it is shown that fluxes from the plasma environment can substantially increase the temperature of the catalyst nanoparticle located on the top of the CNF with respect to the substrate temperature. The difference between the catalyst and the substrate temperatures depends on the substrate width, the length of the CNF, the neutral gas density and temperature as well as the densities of the ions and atoms of the etching gas. In addition to the heating of the nanostructure, the ions and etching gas atoms from the ionized gas environment also strongly affect the CNF growth rates. Due to ion bombardment, the CNF growth rates in plasma enhanced chemical vapour deposition may be much higher than the rates in similar neutral gas-based thermal processes. The CNF growth model, which accounts for the nanostructure heating by the plasma-generated species, provides the growth rates that are in better agreement with the available experimental data on CNF growth than the models in which the heating effects are ignored.
Resumo:
The US National Institute of Standards and Technology (NIST) showed that, in 2004, owners and operations managers bore two thirds of the total industry cost burden from inadequate interoperability in construction projects from inception to operation, amounting to USD10.6 billion. Building Information Modelling (BIM) and similar tools were identified by Engineers Australia in 2005 as potential instruments to significantly reduce this sum, which in Australia could amount to total industry-wide cost burden of AUD12 billion. Public sector road authorities in Australia have a key responsibility in driving initiatives to reduce greenhouse gas emissions from the construction and operations of transport infrastructure. However, as previous research has shown the Environmental Impact Assessment process, typically used for project approvals and permitting based on project designs available at the consent stage, lacks Key Performance Indicators (KPIs) that include long-term impact factors and transfer of information throughout the project life cycle. In the building construction industry, BIM is widely used to model sustainability KPIs such as energy consumption, and integrated with facility management systems. This paper proposes that a similar use of BIM in early design phases of transport infrastructure could provide: (i) productivity gains through improved interoperability and documentation; (ii) the opportunity to carry out detailed cost-benefit analyses leading to significant operational cost savings; (iii) coordinated planning of street and highway lighting with other energy and environmental considerations; iv) measurable KPIs that include long-term impact factors which are transferable throughout the project life cycle; and (v) the opportunity for integrating design documentation with sustainability whole-of-life targets.
Resumo:
The people of Bangladesh are underprivileged from continuous grid electricity. Despite the plentiful supply of renewable sources of energy in Bangladesh, currently their contribution to the electricity supply remains inconsequential. Use of renewable energy is considered an indispensable component of sustainable energy systems, as renewable energy resources emit less greenhouse gas emissions compared to other non-renewable energy systems. Out of the various renewable sources, solar and biogas and to a limited extend, wind and hydro-power are effectively used. Though the biogas production was the leading and most appropriate renewable energy resource in our country, it has become notably insignificant due to the lack of appropriate strategies and institutional settings. To address this, this article examines Bangladesh's current energy strategies and institutional settings and investigates future strategies for the advancement of biogas production. This article argues that further significant efforts could be made toward energy sustainability in Bangladesh and the development for a national sustainable energy policy.