940 resultados para Graph analytics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we use the quantum Jensen-Shannon divergence as a means to establish the similarity between a pair of graphs and to develop a novel graph kernel. In quantum theory, the quantum Jensen-Shannon divergence is defined as a distance measure between quantum states. In order to compute the quantum Jensen-Shannon divergence between a pair of graphs, we first need to associate a density operator with each of them. Hence, we decide to simulate the evolution of a continuous-time quantum walk on each graph and we propose a way to associate a suitable quantum state with it. With the density operator of this quantum state to hand, the graph kernel is defined as a function of the quantum Jensen-Shannon divergence between the graph density operators. We evaluate the performance of our kernel on several standard graph datasets from bioinformatics. We use the Principle Component Analysis (PCA) on the kernel matrix to embed the graphs into a feature space for classification. The experimental results demonstrate the effectiveness of the proposed approach. © 2013 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most fundamental problem that we face in the graph domain is that of establishing the similarity, or alternatively the distance, between graphs. In this paper, we address the problem of measuring the similarity between attributed graphs. In particular, we propose a novel way to measure the similarity through the evolution of a continuous-time quantum walk. Given a pair of graphs, we create a derived structure whose degree of symmetry is maximum when the original graphs are isomorphic, and where a subset of the edges is labeled with the similarity between the respective nodes. With this compositional structure to hand, we compute the density operators of the quantum systems representing the evolution of two suitably defined quantum walks. We define the similarity between the two original graphs as the quantum Jensen-Shannon divergence between these two density operators, and then we show how to build a novel kernel on attributed graphs based on the proposed similarity measure. We perform an extensive experimental evaluation both on synthetic and real-world data, which shows the effectiveness the proposed approach. © 2013 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many Object recognition techniques perform some flavour of point pattern matching between a model and a scene. Such points are usually selected through a feature detection algorithm that is robust to a class of image transformations and a suitable descriptor is computed over them in order to get a reliable matching. Moreover, some approaches take an additional step by casting the correspondence problem into a matching between graphs defined over feature points. The motivation is that the relational model would add more discriminative power, however the overall effectiveness strongly depends on the ability to build a graph that is stable with respect to both changes in the object appearance and spatial distribution of interest points. In fact, widely used graph-based representations, have shown to suffer some limitations, especially with respect to changes in the Euclidean organization of the feature points. In this paper we introduce a technique to build relational structures over corner points that does not depend on the spatial distribution of the features. © 2012 ICPR Org Committee.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graph-based representations have been used with considerable success in computer vision in the abstraction and recognition of object shape and scene structure. Despite this, the methodology available for learning structural representations from sets of training examples is relatively limited. In this paper we take a simple yet effective Bayesian approach to attributed graph learning. We present a naïve node-observation model, where we make the important assumption that the observation of each node and each edge is independent of the others, then we propose an EM-like approach to learn a mixture of these models and a Minimum Message Length criterion for components selection. Moreover, in order to avoid the bias that could arise with a single estimation of the node correspondences, we decide to estimate the sampling probability over all the possible matches. Finally we show the utility of the proposed approach on popular computer vision tasks such as 2D and 3D shape recognition. © 2011 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first part of this paper deals with an extension of Dirac's Theorem to directed graphs. It is related to a result often referred to as the Ghouila-Houri Theorem. Here we show that the requirement of being strongly connected in the hypothesis of the Ghouila-Houri Theorem is redundant. The Second part of the paper shows that a condition on the number of edges for a graph to be hamiltonian implies Ore's condition on the degrees of the vertices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation introduces a new approach for assessing the effects of pediatric epilepsy on the language connectome. Two novel data-driven network construction approaches are presented. These methods rely on connecting different brain regions using either extent or intensity of language related activations as identified by independent component analysis of fMRI data. An auditory description decision task (ADDT) paradigm was used to activate the language network for 29 patients and 30 controls recruited from three major pediatric hospitals. Empirical evaluations illustrated that pediatric epilepsy can cause, or is associated with, a network efficiency reduction. Patients showed a propensity to inefficiently employ the whole brain network to perform the ADDT language task; on the contrary, controls seemed to efficiently use smaller segregated network components to achieve the same task. To explain the causes of the decreased efficiency, graph theoretical analysis was carried out. The analysis revealed no substantial global network feature differences between the patient and control groups. It also showed that for both subject groups the language network exhibited small-world characteristics; however, the patient's extent of activation network showed a tendency towards more random networks. It was also shown that the intensity of activation network displayed ipsilateral hub reorganization on the local level. The left hemispheric hubs displayed greater centrality values for patients, whereas the right hemispheric hubs displayed greater centrality values for controls. This hub hemispheric disparity was not correlated with a right atypical language laterality found in six patients. Finally it was shown that a multi-level unsupervised clustering scheme based on self-organizing maps, a type of artificial neural network, and k-means was able to fairly and blindly separate the subjects into their respective patient or control groups. The clustering was initiated using the local nodal centrality measurements only. Compared to the extent of activation network, the intensity of activation network clustering demonstrated better precision. This outcome supports the assertion that the local centrality differences presented by the intensity of activation network can be associated with focal epilepsy.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding pathways of neurological disorders requires extensive research on both functional and structural characteristics of the brain. This dissertation introduced two interrelated research endeavors, describing (1) a novel integrated approach for constructing functional connectivity networks (FCNs) of brain using non-invasive scalp EEG recordings; and (2) a decision aid for estimating intracranial volume (ICV). The approach in (1) was developed to study the alterations of networks in patients with pediatric epilepsy. Results demonstrated the existence of statistically significant (p

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last decade, large numbers of social media services have emerged and been widely used in people's daily life as important information sharing and acquisition tools. With a substantial amount of user-contributed text data on social media, it becomes a necessity to develop methods and tools for text analysis for this emerging data, in order to better utilize it to deliver meaningful information to users. ^ Previous work on text analytics in last several decades is mainly focused on traditional types of text like emails, news and academic literatures, and several critical issues to text data on social media have not been well explored: 1) how to detect sentiment from text on social media; 2) how to make use of social media's real-time nature; 3) how to address information overload for flexible information needs. ^ In this dissertation, we focus on these three problems. First, to detect sentiment of text on social media, we propose a non-negative matrix tri-factorization (tri-NMF) based dual active supervision method to minimize human labeling efforts for the new type of data. Second, to make use of social media's real-time nature, we propose approaches to detect events from text streams on social media. Third, to address information overload for flexible information needs, we propose two summarization framework, dominating set based summarization framework and learning-to-rank based summarization framework. The dominating set based summarization framework can be applied for different types of summarization problems, while the learning-to-rank based summarization framework helps utilize the existing training data to guild the new summarization tasks. In addition, we integrate these techneques in an application study of event summarization for sports games as an example of how to better utilize social media data. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last decade, large numbers of social media services have emerged and been widely used in people's daily life as important information sharing and acquisition tools. With a substantial amount of user-contributed text data on social media, it becomes a necessity to develop methods and tools for text analysis for this emerging data, in order to better utilize it to deliver meaningful information to users. Previous work on text analytics in last several decades is mainly focused on traditional types of text like emails, news and academic literatures, and several critical issues to text data on social media have not been well explored: 1) how to detect sentiment from text on social media; 2) how to make use of social media's real-time nature; 3) how to address information overload for flexible information needs. In this dissertation, we focus on these three problems. First, to detect sentiment of text on social media, we propose a non-negative matrix tri-factorization (tri-NMF) based dual active supervision method to minimize human labeling efforts for the new type of data. Second, to make use of social media's real-time nature, we propose approaches to detect events from text streams on social media. Third, to address information overload for flexible information needs, we propose two summarization framework, dominating set based summarization framework and learning-to-rank based summarization framework. The dominating set based summarization framework can be applied for different types of summarization problems, while the learning-to-rank based summarization framework helps utilize the existing training data to guild the new summarization tasks. In addition, we integrate these techneques in an application study of event summarization for sports games as an example of how to better utilize social media data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La tesi presenta uno studio della libreria grafica per web D3, sviluppata in javascript, e ne presenta una catalogazione dei grafici implementati e reperibili sul web. Lo scopo è quello di valutare la libreria e studiarne i pregi e difetti per capire se sia opportuno utilizzarla nell'ambito di un progetto Europeo. Per fare questo vengono studiati i metodi di classificazione dei grafici presenti in letteratura e viene esposto e descritto lo stato dell'arte del data visualization. Viene poi descritto il metodo di classificazione proposto dal team di progettazione e catalogata la galleria di grafici presente sul sito della libreria D3. Infine viene presentato e studiato in maniera formale un algoritmo per selezionare un grafico in base alle esigenze dell'utente.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il lavoro presentato in questo elaborato tratterà lo sviluppo di un sistema di alerting che consenta di monitorare proattivamente una o più sorgenti dati aziendali, segnalando le eventuali condizioni di irregolarità rilevate; questo verrà incluso all'interno di sistemi già esistenti dedicati all'analisi dei dati e alla pianificazione, ovvero i cosiddetti Decision Support Systems. Un sistema di supporto alle decisioni è in grado di fornire chiare informazioni per tutta la gestione dell'impresa, misurandone le performance e fornendo proiezioni sugli andamenti futuri. Questi sistemi vengono catalogati all'interno del più ampio ambito della Business Intelligence, che sottintende l'insieme di metodologie in grado di trasformare i dati di business in informazioni utili al processo decisionale. L'intero lavoro di tesi è stato svolto durante un periodo di tirocinio svolto presso Iconsulting S.p.A., IT System Integrator bolognese specializzato principalmente nello sviluppo di progetti di Business Intelligence, Enterprise Data Warehouse e Corporate Performance Management. Il software che verrà illustrato in questo elaborato è stato realizzato per essere collocato all'interno di un contesto più ampio, per rispondere ai requisiti di un cliente multinazionale leader nel settore della telefonia mobile e fissa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'ambiente di questa tesi è quello del Delay and Disruption Tolerant Networks (DTN), un'architettura di rete di telecomunicazioni avente come obiettivo le comunicazioni tra nodi di reti dette “challenged”, le quali devono affrontare problemi come tempi di propagazione elevati, alto tasso di errore e periodi di perdita delle connessioni. Il Bunde layer, un nuovo livello inserito tra trasporto e applicazione nell’architettura ISO/OSI, ed il protocollo ad esso associato, il Bundle Protocol (BP), sono stati progettati per rendere possibili le comunicazioni in queste reti. A volte fra la ricezione e l’invio può trascorrere un lungo periodo di tempo, a causa della indisponibilità del collegamento successivo; in questo periodo il bundle resta memorizzato in un database locale. Esistono varie implementazioni dell'architettura DTN come DTN2, implementazione di riferimento, e ION (Interplanetary Overlay Network), sviluppata da NASA JPL, per utilizzo in applicazioni spaziali; in esse i contatti tra i nodi sono deterministici, a differenza delle reti terrestri nelle quali i contatti sono generalmente opportunistici (non noti a priori). Per questo motivo all’interno di ION è presente un algoritmo di routing, detto CGR (Contact Graph Routing), progettato per operare in ambienti con connettività deterministica. È in fase di ricerca un algoritmo che opera in ambienti non deterministici, OCGR (Opportunistic Contact Graph Routing), che estende CGR. L’obiettivo di questa tesi è quello di fornire una descrizione dettagliata del funzionamento di OCGR, partendo necessariamente da CGR sul quale è basato, eseguire dei test preliminari, richiesti da NASA JPL, ed analizzarne i risultati per verificare la possibilità di utilizzo e miglioramento dell’algoritmo. Sarà inoltre descritto l’ambiente DTN e i principali algoritmi di routing per ambienti opportunistici. Nella parte conclusiva sarà presentato il simulatore DTN “The ONE” e l’integrazione di CGR e OCGR al suo interno.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Los juegos serios (o videojuegos educativos), se consideran una herramienta importante para la educación en el futuro. Por ello, se está invirtiendo mucho esfuerzo en el análisis de su corrección e idoneidad para alcanzar los objetivos educativos pretendidos. El campo de análisis de aprendizaje con juegos pretende proporcionar herramientas que verifiquen estas características mejorando la calidad y efectividad de los juegos serios. Para ello, se necesitan normalmente tres etapas: 1), monitorizar los datos de la interacción del jugador con el juego; 2), analizar esos datos recolectados; y 3), visualizar los resultados. En este contexto, hay algunos asuntos importantes a considerar: nivel de conocimiento del juego, receptor de las visualizaciones finales o cantidad y complejidad de los datos. Estas ideas se ponen en práctica con dos ejemplos de juegos serios centrándonos en las dos últimas etapas del proceso. Se realizan varios análisis y visualizaciones con ellos considerando los diferentes aspectos antes mencionados. Entre las conclusiones que se pueden extraer, destaca que, a pesar de haber algunos aspectos aún por mejorar, el análisis de aprendizaje con juegos es una herramienta esencial para muchos usuarios con una amplia variedad de intereses en juego serios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At the moment, the phrases “big data” and “analytics” are often being used as if they were magic incantations that will solve all an organization’s problems at a stroke. The reality is that data on its own, even with the application of analytics, will not solve any problems. The resources that analytics and big data can consume represent a significant strategic risk if applied ineffectively. Any analysis of data needs to be guided, and to lead to action. So while analytics may lead to knowledge and intelligence (in the military sense of that term), it also needs the input of knowledge and intelligence (in the human sense of that term). And somebody then has to do something new or different as a result of the new insights, or it won’t have been done to any purpose. Using an analytics example concerning accounts payable in the public sector in Canada, this paper reviews thinking from the domains of analytics, risk management and knowledge management, to show some of the pitfalls, and to present a holistic picture of how knowledge management might help tackle the challenges of big data and analytics.