878 resultados para Gaussian functions
Resumo:
A systematic time-dependent perturbation scheme for classical canonical systems is developed based on a Wick's theorem for thermal averages of time-ordered products. The occurrence of the derivatives with respect to the canonical variables noted by Martin, Siggia, and Rose implies that two types of Green's functions have to be considered, the propagator and the response function. The diagrams resulting from Wick's theorem are "double graphs" analogous to those introduced by Dyson and also by Kawasaki, in which the response-function lines form a "tree structure" completed by propagator lines. The implication of a fluctuation-dissipation theorem on the self-energies is analyzed and compared with recent results by Deker and Haake.
Resumo:
The class of Schoenberg transformations, embedding Euclidean distances into higher dimensional Euclidean spaces, is presented, and derived from theorems on positive definite and conditionally negative definite matrices. Original results on the arc lengths, angles and curvature of the transformations are proposed, and visualized on artificial data sets by classical multidimensional scaling. A distance-based discriminant algorithm and a robust multidimensional centroid estimate illustrate the theory, closely connected to the Gaussian kernels of Machine Learning.
Resumo:
Herein we present a calculation of the mean first-passage time for a bistable one-dimensional system driven by Gaussian colored noise of strength D and correlation time ¿c. We obtain quantitative agreement with experimental analog-computer simulations of this system. We disagree with some of the conclusions reached by previous investigators. In particular, we demonstrate that all available approximations that lead to a state-dependent diffusion coefficient lead to the same result for small D¿c.
Resumo:
Taking into account the nature of the hydrological processes involved in in situ measurement of Field Capacity (FC), this study proposes a variation of the definition of FC aiming not only at minimizing the inadequacies of its determination, but also at maintaining its original, practical meaning. Analysis of FC data for 22 Brazilian soils and additional FC data from the literature, all measured according to the proposed definition, which is based on a 48-h drainage time after infiltration by shallow ponding, indicates a weak dependency on the amount of infiltrated water, antecedent moisture level, soil morphology, and the level of the groundwater table, but a strong dependency on basic soil properties. The dependence on basic soil properties allowed determination of FC of the 22 soil profiles by pedotransfer functions (PTFs) using the input variables usually adopted in prediction of soil water retention. Among the input variables, soil moisture content θ (6 kPa) had the greatest impact. Indeed, a linear PTF based only on it resulted in an FC with a root mean squared residue less than 0.04 m³ m-3 for most soils individually. Such a PTF proved to be a better FC predictor than the traditional method of using moisture content at an arbitrary suction. Our FC data were compatible with an equivalent and broader USA database found in the literature, mainly for medium-texture soil samples. One reason for differences between FCs of the two data sets of fine-textured soils is due to their different drainage times. Thus, a standardized procedure for in situ determination of FC is recommended.
Resumo:
We obtain the exact analytical expression, up to a quadrature, for the mean exit time, T(x,v), of a free inertial process driven by Gaussian white noise from a region (0,L) in space. We obtain a completely explicit expression for T(x,0) and discuss the dependence of T(x,v) as a function of the size L of the region. We develop a new method that may be used to solve other exit time problems.
Resumo:
The exact analytical expression for the Hausdorff dimension of free processes driven by Gaussian noise in n-dimensional space is obtained. The fractal dimension solely depends on the time behavior of the arbitrary correlation function of the noise, ranging from DX=1 for Orstein-Uhlenbeck input noise to any real number greater than 1 for fractional Brownian motions.
Resumo:
Under field conditions in the Amazon forest, soil bulk density is difficult to measure. Rigorous methodological criteria must be applied to obtain reliable inventories of C stocks and soil nutrients, making this process expensive and sometimes unfeasible. This study aimed to generate models to estimate soil bulk density based on parameters that can be easily and reliably measured in the field and that are available in many soil-related inventories. Stepwise regression models to predict bulk density were developed using data on soil C content, clay content and pH in water from 140 permanent plots in terra firme (upland) forests near Manaus, Amazonas State, Brazil. The model results were interpreted according to the coefficient of determination (R2) and Akaike information criterion (AIC) and were validated with a dataset consisting of 125 plots different from those used to generate the models. The model with best performance in estimating soil bulk density under the conditions of this study included clay content and pH in water as independent variables and had R2 = 0.73 and AIC = -250.29. The performance of this model for predicting soil density was compared with that of models from the literature. The results showed that the locally calibrated equation was the most accurate for estimating soil bulk density for upland forests in the Manaus region.
Resumo:
We have shown that finite-size effects in the correlation functions away from equilibrium may be introduced through dimensionless numbers: the Nusselt numbers, accounting for both the nature of the boundaries and the size of the system. From an analysis based on fluctuating hydrodynamics, we conclude that the mean-square fluctuations satisfy scaling laws, since they depend only on the dimensionless numbers in addition to reduced variables. We focus on the case of diffusion modes and describe some physical situations in which finite-size effects may be relevant.
Resumo:
A dynamical model based on a continuous addition of colored shot noises is presented. The resulting process is colored and non-Gaussian. A general expression for the characteristic function of the process is obtained, which, after a scaling assumption, takes on a form that is the basis of the results derived in the rest of the paper. One of these is an expansion for the cumulants, which are all finite, subject to mild conditions on the functions defining the process. This is in contrast with the Lévy distribution¿which can be obtained from our model in certain limits¿which has no finite moments. The evaluation of the spectral density and the form of the probability density function in the tails of the distribution shows that the model exhibits a power-law spectrum and long tails in a natural way. A careful analysis of the characteristic function shows that it may be separated into a part representing a Lévy process together with another part representing the deviation of our model from the Lévy process. This
Exact solution to the exit-time problem for an undamped free particle driven by Gaussian white noise
Resumo:
In a recent paper [Phys. Rev. Lett. 75, 189 (1995)] we have presented the exact analytical expression for the mean exit time, T(x,v), of a free inertial process driven by Gaussian white noise out of a region (0,L) in space. In this paper we give a detailed account of the method employed and present results on asymptotic properties and averages of T(x,v).
Resumo:
Molecular dynamics simulation is applied to the study of the diffusion properties in binary liquid mixtures made up of soft-sphere particles with different sizes and masses. Self- and distinct velocity correlation functions and related diffusion coefficients have been calculated. Special attention has been paid to the dynamic cross correlations which have been computed through recently introduced relative mean molecular velocity correlation functions which are independent on the reference frame. The differences between the distinct velocity correlations and diffusion coefficients in different reference frames (mass-fixed, number-fixed, and solvent-fixed) are discussed.
Resumo:
We study the motion of a particle governed by a generalized Langevin equation. We show that, when no fluctuation-dissipation relation holds, the long-time behavior of the particle may be from stationary to superdiffusive, along with subdiffusive and diffusive. When the random force is Gaussian, we derive the exact equations for the joint and marginal probability density functions for the position and velocity of the particle and find their solutions.
Resumo:
Mitochondrial dysfunction is one of the possible mechanisms by which azole resistance can occur in Candida glabrata. Cells with mitochondrial DNA deficiency (so-called "petite mutants") upregulate ATP binding cassette (ABC) transporter genes and thus display increased resistance to azoles. Isolation of such C. glabrata mutants from patients receiving antifungal therapy or prophylaxis has been rarely reported. In this study, we characterized two sequential and related C. glabrata isolates recovered from the same patient undergoing azole therapy. The first isolate (BPY40) was azole susceptible (fluconazole MIC, 4 μg/ml), and the second (BPY41) was azole resistant (fluconazole MIC, >256 μg/ml). BPY41 exhibited mitochondrial dysfunction and upregulation of the ABC transporter genes C. glabrata CDR1 (CgCDR1), CgCDR2, and CgSNQ2. We next assessed whether mitochondrial dysfunction conferred a selective advantage during host infection by testing the virulence of BPY40 and BPY41 in mice. Surprisingly, even with in vitro growth deficiency compared to BPY40, BPY41 was more virulent (as judged by mortality and fungal tissue burden) than BPY40 in both systemic and vaginal murine infection models. The increased virulence of the petite mutant correlated with a drastic gain of fitness in mice compared to that of its parental isolate. To understand this unexpected feature, genome-wide changes in gene expression driven by the petite mutation were analyzed by use of microarrays during in vitro growth. Enrichment of specific biological processes (oxido-reductive metabolism and the stress response) was observed in BPY41, all of which was consistent with mitochondrial dysfunction. Finally, some genes involved in cell wall remodelling were upregulated in BPY41 compared to BPY40, which may partially explain the enhanced virulence of BPY41. In conclusion, this study shows for the first time that mitochondrial dysfunction selected in vivo under azole therapy, even if strongly affecting in vitro growth characteristics, can confer a selective advantage under host conditions, allowing the C. glabrata mutant to be more virulent than wild-type isolates.
Resumo:
Preface The starting point for this work and eventually the subject of the whole thesis was the question: how to estimate parameters of the affine stochastic volatility jump-diffusion models. These models are very important for contingent claim pricing. Their major advantage, availability T of analytical solutions for characteristic functions, made them the models of choice for many theoretical constructions and practical applications. At the same time, estimation of parameters of stochastic volatility jump-diffusion models is not a straightforward task. The problem is coming from the variance process, which is non-observable. There are several estimation methodologies that deal with estimation problems of latent variables. One appeared to be particularly interesting. It proposes the estimator that in contrast to the other methods requires neither discretization nor simulation of the process: the Continuous Empirical Characteristic function estimator (EGF) based on the unconditional characteristic function. However, the procedure was derived only for the stochastic volatility models without jumps. Thus, it has become the subject of my research. This thesis consists of three parts. Each one is written as independent and self contained article. At the same time, questions that are answered by the second and third parts of this Work arise naturally from the issues investigated and results obtained in the first one. The first chapter is the theoretical foundation of the thesis. It proposes an estimation procedure for the stochastic volatility models with jumps both in the asset price and variance processes. The estimation procedure is based on the joint unconditional characteristic function for the stochastic process. The major analytical result of this part as well as of the whole thesis is the closed form expression for the joint unconditional characteristic function for the stochastic volatility jump-diffusion models. The empirical part of the chapter suggests that besides a stochastic volatility, jumps both in the mean and the volatility equation are relevant for modelling returns of the S&P500 index, which has been chosen as a general representative of the stock asset class. Hence, the next question is: what jump process to use to model returns of the S&P500. The decision about the jump process in the framework of the affine jump- diffusion models boils down to defining the intensity of the compound Poisson process, a constant or some function of state variables, and to choosing the distribution of the jump size. While the jump in the variance process is usually assumed to be exponential, there are at least three distributions of the jump size which are currently used for the asset log-prices: normal, exponential and double exponential. The second part of this thesis shows that normal jumps in the asset log-returns should be used if we are to model S&P500 index by a stochastic volatility jump-diffusion model. This is a surprising result. Exponential distribution has fatter tails and for this reason either exponential or double exponential jump size was expected to provide the best it of the stochastic volatility jump-diffusion models to the data. The idea of testing the efficiency of the Continuous ECF estimator on the simulated data has already appeared when the first estimation results of the first chapter were obtained. In the absence of a benchmark or any ground for comparison it is unreasonable to be sure that our parameter estimates and the true parameters of the models coincide. The conclusion of the second chapter provides one more reason to do that kind of test. Thus, the third part of this thesis concentrates on the estimation of parameters of stochastic volatility jump- diffusion models on the basis of the asset price time-series simulated from various "true" parameter sets. The goal is to show that the Continuous ECF estimator based on the joint unconditional characteristic function is capable of finding the true parameters. And, the third chapter proves that our estimator indeed has the ability to do so. Once it is clear that the Continuous ECF estimator based on the unconditional characteristic function is working, the next question does not wait to appear. The question is whether the computation effort can be reduced without affecting the efficiency of the estimator, or whether the efficiency of the estimator can be improved without dramatically increasing the computational burden. The efficiency of the Continuous ECF estimator depends on the number of dimensions of the joint unconditional characteristic function which is used for its construction. Theoretically, the more dimensions there are, the more efficient is the estimation procedure. In practice, however, this relationship is not so straightforward due to the increasing computational difficulties. The second chapter, for example, in addition to the choice of the jump process, discusses the possibility of using the marginal, i.e. one-dimensional, unconditional characteristic function in the estimation instead of the joint, bi-dimensional, unconditional characteristic function. As result, the preference for one or the other depends on the model to be estimated. Thus, the computational effort can be reduced in some cases without affecting the efficiency of the estimator. The improvement of the estimator s efficiency by increasing its dimensionality faces more difficulties. The third chapter of this thesis, in addition to what was discussed above, compares the performance of the estimators with bi- and three-dimensional unconditional characteristic functions on the simulated data. It shows that the theoretical efficiency of the Continuous ECF estimator based on the three-dimensional unconditional characteristic function is not attainable in practice, at least for the moment, due to the limitations on the computer power and optimization toolboxes available to the general public. Thus, the Continuous ECF estimator based on the joint, bi-dimensional, unconditional characteristic function has all the reasons to exist and to be used for the estimation of parameters of the stochastic volatility jump-diffusion models.
Resumo:
The low-temperature isothermal magnetization curves, M(H), of SmCo4 and Fe3Tb thin films are studied according to the two-dimensional correlated spin-glass model of Chudnovsky. We have calculated the magnetization law in approach to saturation and shown that the M(H) data fit well the theory at high and low fields. In our fit procedure we have used three different correlation functions. The Gaussian decay correlation function fits well the experimental data for both samples.