979 resultados para Gallium arsenide semiconductors
Resumo:
Two semiconducting hybrid gallium selenides, [Ga6Se9(C6H14N2)4][H2O] (1) and [C6H14N2][Ga4Se6(C6H14N2)2] (2), were prepared using a solvothermal method in the pres-ence of 1,2-diaminocyclohexane (1,2-DACH). Both materials consist of neutral inorganic layers, in which 1,2-DACH is co-valently bonded to gallium. In (1), the organic amine acts as a monodentate and a bidentate ligand, while in (2) bidentate and uncoordinated 1,2-DACH molecules coexist.
Resumo:
The synthesis and characterization of the first anions containing two gallium-sulfide supertetrahedra linked via an organic moiety are described.
Resumo:
The synthesis and crystal structure of four gallium sulphide open frameworks, built from supertetrahedral clusters, are described. The structures of [C4NH12]6[Ga10S18][C4NH12]6[Ga10S18](1) and [C4NH12]12[Ga20S35.5(S3)0.5O](2) contain supertetrahedral T3 clusters, while in the isostructural compounds [C4NH12]16[Ga10S18M4Ga16S33][C4NH12]16[Ga10S18M4Ga16S33] (M=CoM=Co(3), Zn (4)), T3 and T4 clusters alternate. These materials exhibit three-dimensional frameworks, with topologies consisting of two interpenetrating diamond lattices, and contain over 50% of solvent accessible void space. UV–Vis diffuse reflectance measurements indicate that these compounds are semiconducting, with band gaps over the range 3.4–4.1 eV.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work, we have studied the acoustic phonon wave propagation within the periodic and quasiperiodic superlattices of Fibonacci type. These structures are formed by phononic crystals, whose periodicity allows the raise of regions known as stop bands, which prevent the phonon propagation throughout the structure for specific frequency values. This phenomenon allows the construction of acoustic filters with great technological potential. Our theoretical model were based on the method of the transfer matrix, thery acoustics phonons which describes the propagation of the transverse and longitudinal modes within a unit cell, linking them with the precedent cell in the multilayer structure. The transfer matrix is built taking into account the elastic and electromagnetic boundary conditions in the superllatice interfaces, and it is related to the coupled differential equation solutions (elastic and electromagnetic) that describe each model under consideration. We investigated the piezoelectric properties of GaN and AlN the nitride semiconductors, whose properties are important to applications in the semiconductor device industry. The calculations that characterize the piezoelectric system, depend strongly on the cubic (zinc-bend) and hexagonal (wurtzite) crystal symmetries, that are described the elastic and piezoelectric tensors. The investigation of the liquid Hg (mercury), Ga (gallium) and Ar (argon) systems in static conditions also using the classical theory of elasticity. Together with the Euler s equation of fluid mechanics they one solved to the solid/liquid and the liquid/liquid interfaces to obtain and discuss several interesting physical results. In particular, the acoustical filters obtained from these structures are again presented and their features discussed
Resumo:
In this work we deposit via non-reactive magnetron sputtering of radio-frequency nanofilmes of nitreto of aluminum(AlN). The nanofilms aluminum nitride are semiconductors materials with high thermal conductivity, high melting point, piezoelectricity and wide band gap (6, 2 eV) with hexagonal wurtzite crystal structure, belonging to the group of new materials called III-V nitrides in which together with the gallium nitride and indium nitride have attracted much interest because they have physical and chemical properties relevant to new technological applications, mainly in microelectronic and optoelectronic devices. Three groups were deposited with thicknesses nanofilms time dependent on two substrates (glass and silicon) at a temperature of 25 ° C. The nanofilms AlN were characterized using three techniques, X-ray diffraction, Raman spectroscopy and atomic force microscopy (AFM), examined the morphology of these. Through the analysis of X-rays get the thickness of each sample with its corresponding deposition rate. The analysis of X-rays also revealed that nanofilms are not crystalline, showing the amorphous character of the samples. The results obtained by the technique, atomic force microscopy (AFM) agree with those obtained using the technique of X-rays. Characterization by Raman spectroscopy revealed the existence of active modes characteristic of AlN in the samples
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present work studied the influence of thermal treatment in oxygen rich atmosphere on heterogenous junctions in Mn-doped SnO2 polycrystalline system presenting varistor behavior. The samples were prepared by conventional oxide mixture methodology, and were submitted to heat treatment in oxygen rich atmosphere at 900 degrees C for 2h. The samples were characterized by X-ray diffraction, scanning electron microscopy, dc and ac electrical measurements. The results showed that there is an evident relationship between the microstructure heterogeneity and non-ohmic electrical properties. It was found that for this SnO2 center dot MnO-based varistor system the heat treatment in oxygen rich atmosphere does not necessarily increase the varistors properties, which was related to the decrease in the grain boundary resistance. The results are compared with Co-doped SnO2 varistors and ZnO based varistors. (C) 2008 WILEY-VCH Verlay GmbH & Co. KGaA, Weinheim.
Resumo:
Objective: The purpose of this study was to evaluate the effect of low-level laser therapy (LLLT) on wound healing process and pain levels after premolar extraction in adolescents. Background data: The advantage of using LLLT in oral surgeries is the reduction of inflammation and postoperative discomfort; however, the optimal dosing parameters and treatment effects in surgical procedures are inconclusive. Methods: A double-blind, randomized, controlled clinical trial was conducted with 14 patients who were to undergo surgical removal of premolars. Patients were randomly allocated to the LLLT (test) group and placebo (control) group. Patients in the test group received 5.1 J (60 J/cm(2)) of energy density of a gallium-aluminum-arsenide (GaAlAs) diode laser (wavelength, 830 nm; output power, 0.1 W) at three different points intraorally, 1 cm from the target tissue immediately and at 48 and 72 h after the surgical procedure. For patients in the placebo group, the laser device was applied to the same points without activating the hand piece. The wound healing process was evaluated by an independent examiner by visual inspection with the support of digital photographs at baseline and 2, 7, and 15 days postoperatively. Patients recorded the degree of pain using the visual analogue scale (VAS). Results: Compared with the placebo group, the test group showed a lower intensity of pain, but this difference was not statistically significant at any time point. The wound healing process was similar in both groups. Conclusions: Within the limitations of this study, the LLLT parameters used neither increased the wound healing process nor significantly decreased pain intensity after premolar extraction in adolescents.
Resumo:
Objective: To investigate the healing of bone defects in male rats treated with salmon calcitonin, low-level laser therapy (LLLT), or both. Background: Healing of bone defects still represents a challenge to health professionals in several areas. In this article, the effect of calcitonin in combination with LLLT on bone repair was studied. Densitometry was used as a valuable tool for the measurement of bone regeneration. Methods: Sixty male Wistar rats underwent bilateral castration surgery before the creation of a surgical bone defect. The animals were randomly divided into four groups: control, treated with calcitonin (Ca), treated with LLLT (La), and treated with calcitonin and LLLT (CaLa). Groups Ca and CaLa received 2 IU/kg of synthetic salmon calcitonin intra-muscularly three times a week. Groups La and CaLa received laser therapy using a gallium-aluminum-arsenide laser (10mW, 20 J/cm(2), wavelength 830 nm). Control animals were submitted to sham irradiation. The animals were sacrificed 7, 14, and 21 days after surgery, and bone defects were analyzed using densitometry. Results: The CaLa group had a higher degree of bone regeneration 14 and 21 days after surgery. Conclusions: The La and CaLa had significantly higher bone mineral density than the control and Ca groups.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Using the hyperspherical adiabatic approach in a coupled-channel calculation, we present precise binding energies of excitons trapped by impurity donors in semiconductors within the effective-mass approximation. Energies for such three-body systems are presented as a function of the relative electron-hole mass sigma in the range 1 less than or equal to1/sigma less than or equal to6, where the Born-Oppenheimer approach is not efficiently applicable. The hyperspherical approach leads to precise energies using the intuitive picture of potential curves and nonadiabatic couplings in an ab initio procedure. We also present an estimation for a critical value of sigma (sigma (crit)) for which no bound state can be found. Comparisons are given with results of prior work by other authors.