866 resultados para Gait in humans
Resumo:
To the Editor—We thank Bonten and Mevius for their interest in our systematic review [1]. In their letter, they disagree with our finding that whole-bacterium transmission (WBT) of expanded-spectrum cephalosporin-resistant (ESCR) Escherichia coli between food-producing animals and humans likely contributes to the burden of human extraintestinal infections. We respectfully argue against 2 assumptions that underlie their assertion.
Resumo:
Several studies have supported a beneficial role of dietary flavonoids in reducing the risk/progression of chronic diseases (including hypertension, cardiovascular disease, certain cancers, type-2-diabetes, cognitive dysfunction, age-related bone disease). Their beneficial properties are likely to be affected by their structure, distribution in foods, food matrix, life habits (physical activity). Most dietary polyphenols reach the colon where they are metabolized to phenolic acids by gut bacteria. Lack of knowledge of the factors affecting flavonoid metabolism and bioavailability hinders understanding of their health effects. Therefore, this thesis aimed to investigate the effect of factors on bioavailability and metabolism of dietary polyphenols from orange juices (OJ) in in vitro and in vivo studies. In chapter 3, the variability of orange juice polyphenolic content was assessed using in vitro models of the human gastrointestinal tract. Chapter 4 investigated the reduced urinary phenolic acids after OJ and yoghurt (Y) in humans compared to OJ alone using in vitro models of the human gut. In chapter 5, raftiline and glucose were tested for effects on metabolism of hesperidin (flavanone not OJ). In chapter 6, an intervention study of 4 weeks moderate intensity exercise determined whether exercise affected bioavailability and metabolism of OJ flavanones in healthy sedentary females. The studies in this thesis showed that food sources, food matrix and physical exercise may determine the significant variations in bioavailability and metabolism of flavonoids, seen in a number of studies. These factors could result in differences in bioactivity and bioefficacy of polyphenols, and need to be taken into account in further studies of the effects of flavanones on disease risk.
Resumo:
The main purpose of this pilot study was to investigate the possible influence of genetic polymorphisms of the hOGG1 (Ser326Cys) gene in DNA damage and repair activity by 8-oxoguanine DNA glycosylase 1 (OGG1 enzyme) in response to 16 weeks of combined physical exercise training. Thirty-two healthy Caucasian men (40-74 years old) were enrolled in this study. All the subjects were submitted to a training of 16 weeks of combined physical exercise. The subjects with Ser/Ser genotype were considered as wild-type group (WTG), and Ser/Cys and Cys/Cys genotype were analysed together as mutant group (MG). We used comet assay in conjunction with formamidopyrimidine DNA glycoslyase (FPG) to analyse both strand breaks and FPG-sensitive sites. DNA repair activity were also analysed with the comet assay technique. Our results showed no differences between DNA damage (both strand breaks and FPG-sensitive sites) and repair activity (OGG1) between genotype groups (in the pre-training condition). Regarding the possible influence of genotype in the response to 16 weeks of physical exercise training, the results revealed a decrease in DNA strand breaks in both groups, a decrease in FPG-sensitive sites and an increase in total antioxidant capacity in the WTG, but no changes were found in MG. No significant changes in DNA repair activity was observed in both genotype groups with physical exercise training. This preliminary study suggests the possibility of different responses in DNA damage to the physical exercise training, considering the hOGG1 Ser326Cys polymorphism.
Resumo:
Common computational principles underlie processing of various visual features in the cortex. They are considered to create similar patterns of contextual modulations in behavioral studies for different features as orientation and direction of motion. Here, I studied the possibility that a single theoretical framework, implemented in different visual areas, of circular feature coding and processing could explain these similarities in observations. Stimuli were created that allowed direct comparison of the contextual effects on orientation and motion direction with two different psychophysical probes: changes in weak and strong signal perception. One unique simplified theoretical model of circular feature coding including only inhibitory interactions, and decoding through standard vector average, successfully predicted the similarities in the two domains, while different feature population characteristics explained well the differences in modulation on both experimental probes. These results demonstrate how a single computational principle underlies processing of various features across the cortices.
Resumo:
Erratum to: A single theoretical framework for circular features processing in humans: orientation and direction of motion compared. In: Frontiers in computational neuroscience 6 (2012), 28
Resumo:
Resumo:
Clostridium difficile is an emerging enteropathogen responsible for pseudomembranous colitis in humans and diarrhoea in several domestic and wild animal species. Despite its known importance, there are few studies about C. difficile polymerase chain reaction (PCR) ribotypes in Brazil and the actual knowledge is restricted to studies on human isolates. The aim of the study was therefore to compare C. difficile ribotypes isolated from humans and animals in Brazil. Seventysix C. difficile strains isolated from humans (n = 25), dogs (n = 23), piglets (n = 12), foals (n = 7), calves (n = 7), one cat, and one manned wolf were distributed into 24 different PCR ribotypes. Among toxigenic strains, PCR ribotypes 014/020 and 106 were the most common, accounting for 14 (18.4%) and eight (10.5%) samples, respectively. Fourteen different PCR ribotypes were detected among human isolates, nine of them have also been identified in at least one animal species. PCR ribotype 027 was not detected, whereas 078 were found only in foals. This data suggests a high diversity of PCR ribotypes in humans and animals in Brazil and support the discussion of C. difficile as a zoonotic pathogen.
Resumo:
Combining information on kinetics and kinematics of the trunk during gait is important for both clinical and research purposes, since it can help in better understanding the mechanisms behind changes in movement patterns in chronic low back pain patients. Although three-dimensional gait analysis has been used to evaluate chronic low back pain and healthy individuals, the reliability and measurement error of this procedure have not been fully established. The main purpose of this thesis is to gain a better understanding about the differences in the biomechanics of the trunk and lower limbs during gait, in patients and healthy individuals. To achieve these aims, three studies were developed. The first two, adopted a prospective design and focused on the reliability and measurement error of gait analysis. In these test-retest studies, chronic low back pain and healthy individuals were submitted to a gait assessment protocol, with two distinct evaluation moments, separated by one week. Gait data was collected using a 13-camera opto-electronic system and three force platforms. Data analysis included the computation of time-distance parameters, as well as the peak values for lower limb and trunk joint angles/moments. The third study followed a cross sectional design, where gait in chronic low back pain individuals was compared with matched controls. Step-to-step variability of the thoracic, lumbar and hips was calculated, and step-to-step deviations of these segments from their average pattern (residual rotations) were correlated to each other. The reliability studies in this thesis show that three-dimensional gait analysis is a reliable and consistent procedure for both chronic low back pain and healthy individuals. The results suggest varied reliability indices for multi-segment trunk joint angles, joint moments and time-distance parameters during gait, together with an acceptable level of error (particularly regarding sagittal plane). Our findings also show altered stride-to-stride variability of lumbar and thoracic segments and lower trunk joint moments in patients. These kinematic and kinetic results lend support to the notion that chronic low back pain individuals exhibit a protective movement strategy.
Resumo:
Tese de Doutoramento, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2016
Resumo:
O objetivo do estudo foi analisar o efeito da tarefa dupla na variabilidade do andar livre e adaptativo em pacientes com demência de Alzheimer. Foram avaliados 30 indivíduos de ambos os sexos. Os participantes realizaram 5 tentativas para cada condição de andar (livre e adaptativo, com tarefa dupla e sem tarefa dupla), totalizando 20 tentativas.As variáveis espaço-temporais foram coletadas através de um sistema optoeletrônico. Para o andar livre foram considerados os cinco passos centrais da passarela. Para o andar adaptativo foram considerados os três passos anteriores ao obstáculo, o passo de ultrapassagem e o primeiro passo após a ultrapassagem. Os valores do desvio-padrão de cada variável de cada indivíduo nas 5 tentativas para cada condição de andar foram utilizados para calcular a variabilidade dos seguintes parâmetros: comprimento, largura, duração da fase de suporte simples e de duplo suporte, e velocidade de cada passo. Para verificar as diferenças entre as condições experimentais, foram empregadas ANOVAs, com medidas repetidas para a condição experimental. Os resultados indicaram que a tarefa dupla teve pouco efeito na variabilidade do andar livre de pacientes com DA. As variações ocorreram com maior frequência quando a tarefa dupla foi exigida concomitante com o obstáculo, deixando claro que os efeitos da doença influenciam no planejamento da ação. Conclui-se que a tarefa executiva de contagem regressiva não exerceu influência nas variáveis da marcha livre e que o andar adaptativo com contagem apresentou resultados com maior variabilidade, sendo mais desafiador e exigindo maiores ajustes dos pacientes
Resumo:
A doença de Parkinson (DP) é uma patologia crônica, degenerativa e progressiva acarretada pela perda de neurônios dopaminérgicos da substância negra (parte compacta), localizada nos núcleos da base. Os comprometimentos na marcha estão entre as principais consequências da DP. Entretanto, pouco se conhece sobre o efeito do estágio da doença na modulação da velocidade do andar. Assim, o objetivo do estudo foi verificar como pacientes em diferentes estágios da DP modulam os parâmetros do andar quando requeridos a andar em máxima velocidade. Os participantes do estudo foram indivíduos com DP idiopática em estágio unilateral (entre 1 e 1,5 na Escala de Hoehn & Yahr) e bilateral (entre 2 e 3 na Escala de Hoehn & Yahr). Inicialmente, os participantes foram submetidos a uma avaliação clínica, realizada por um médico neuropsiquiatra, para verificar o acometimento geral e o estágio da doença. Os dados da avaliação clínica foram utilizados para a distribuição dos participantes entre os dois grupos. Em seguida, os participantes foram convidados a andar sobre uma passarela de 10m de comprimento em duas condições experimentais: Velocidade preferida e velocidade máxima. Somente o grupo bilateral não foi capaz de modular o comprimento da passada na condição de velocidade máxima. Os resultados sugerem que a evolução da DP compromete a capacidade dos pacientes em modular a amplitude de movimentos (comprimento da passada) quando são requeridos a andar em velocidade máxima
Resumo:
This work presents an application of optical fiber sensors based on Bragg gratings integrated to a transtibial prosthesis tube manufactured with a polymeric composite systrem of epoxy resin reinforced with glass fiber. The main objective of this study is to characterize the sensors applied to the gait cycle and changes in the gravity center of a transtibial amputee, trough the analysis of deformation and strengh of the transtibial prosthesis tube. For this investigation it is produced a tube of the composite material described above using the molding method of resin transfer (RTM) with four optical sensors. The prosthesis in which the original tube is replaced is classified as endoskeletal, has vacuum fitting, aluminium conector tube and carbon fiber foot cushioning. The volunteer for the tests was a man of 41 years old, 1.65 meters tall, 72 kilograms and left-handed. His amputation occurred due to trauma (surgical section is in the medial level, and was made below the left lower limb knee). He has been a transtibial prosthesis user for two years and eight months. The characterization of the optical sensors and analysis of mechanical deformation and tube resistance occurred through the gait cycle and the variation of the center of gravity of the body by the following tests: stand up, support leg without the prosthesis, support in the leg with the prosthesis, walk forward and walk backward. Besides the characterization of optical sensors during the gait cycle and the variation of the gravity center in a transtibial amputated, the results also showed a high degree of integration of the sensors in the composite and a high mechanical strength of the material.
Resumo:
1) A large body of behavioral data conceming animal and human gaits and gait transitions is simulated as emergent properties of a central pattern generator (CPG) model. The CPG model incorporates neurons obeying Hodgkin-Huxley type dynamics that interact via an on-center off-surround anatomy whose excitatory signals operate on a faster time scale than their inhibitory signals. A descending cornmand or arousal signal called a GO signal activates the gaits and controL their transitions. The GO signal and the CPG model are compared with neural data from globus pallidus and spinal cord, among other brain structures. 2) Data from human bimanual finger coordination tasks are simulated in which anti-phase oscillations at low frequencies spontaneously switch to in-phase oscillations at high frequencies, in-phase oscillations can be performed both at low and high frequencies, phase fluctuations occur at the anti-phase in-phase transition, and a "seagull effect" of larger errors occurs at intermediate phases. When driven by environmental patterns with intermediate phase relationships, the model's output exhibits a tendency to slip toward purely in-phase and anti-phase relationships as observed in humans subjects. 3) Quadruped vertebrate gaits, including the amble, the walk, all three pairwise gaits (trot, pace, and gallop) and the pronk are simulated. Rapid gait transitions are simulated in the order--walk, trot, pace, and gallop--that occurs in the cat, along with the observed increase in oscillation frequency. 4) Precise control of quadruped gait switching is achieved in the model by using GO-dependent modulation of the model's inhibitory interactions. This generates a different functional connectivity in a single CPG at different arousal levels. Such task-specific modulation of functional connectivity in neural pattern generators has been experimentally reported in invertebrates. Phase-dependent modulation of reflex gain has been observed in cats. A role for state-dependent modulation is herein predicted to occur in vertebrates for precise control of phase transitions from one gait to another. 5) The primary human gaits (the walk and the run) and elephant gaits (the amble and the walk) are sirnulated. Although these two gaits are qualitatively different, they both have the same limb order and may exhibit oscillation frequencies that overlap. The CPG model simulates the walk and the run by generating oscillations which exhibit the same phase relationships. but qualitatively different waveform shapes, at different GO signal levels. The fraction of each cycle that activity is above threshold quantitatively distinguishes the two gaits, much as the duty cycles of the feet are longer in the walk than in the run. 6) A key model properly concerns the ability of a single model CPG, that obeys a fixed set of opponent processing equations to generate both in-phase and anti-phase oscillations at different arousal levels. Phase transitions from either in-phase to anti-phase oscillations, or from anti-phase to in-phase oscillations, can occur in different parameter ranges, as the GO signal increases.