981 resultados para GAMMA-AMINOBUTYRIC-ACID
Resumo:
Studies of the effect of ethanol on human visual evoked potentials are rare and usually involve chronic alcoholic patients. The effect of acute ethanol ingestion has seldom been investigated. We have studied the effect of acute alcoholic poisoning on pattern-reversal visual evoked potentials (PR-VEP) and flash light visual evoked potentials (F-VEP) in 20 normal volunteers. We observed different effects with ethanol: statistically significant prolonged latencies of F-VEP after ingestion, and no significant differences in the latencies of the PR-VEP components. We hypothesize a selective ethanol effect on the afferent transmission of rods, mainly dependent on GABA and glutamatergic neurotransmission, influencing F-VEP latencies, and no effect on cone afferent transmission, as alcohol doesn't influence PR-VEP latencies.
Resumo:
We report a female child with tetrasomy of the 15q11-q13 chromosomal region, and autistic disorder associated with mental retardation, developmental problems and behavioral disorders. Combining classical and molecular cytogenetic approaches by fluorescence in situ hybridization technique, the karyotype was demonstrated as 47,XX,+mar.ish der(15)(D15Z1++,D15S11++,GABRB3++,PML-). Duplication of the 15q proximal segment represents the most consistent chromosomal abnormality reported in association with autism. The contribution of the GABA receptor subunit genes, and other genes mapped to this region, to the clinical symptoms of the disease is discussed.
Resumo:
Fungi producing γ-linolenic acid (GLA) were isolated from soil of the Ecological Station of Juréia-Itatins, SP. This essential fatty acid has aroused great interest due to its increasing by applications in pharmaceutical industry. The GLA production by zygomycetous fungi is an alternative way of comparing seed extraction. Thirty-two zygomycetous strains of Mucorales were isolated, most of them belonging to Mucor genus. The GLA production was evaluated after 4 days of incubation at 25°C on a rotary shaker at 150 rpm in medium containing 2% glucose, and 1% yeast extract, following new medium addition (20%) and incubation for an additional period of 3 days at 12°C, without agitation. The GLA production varied according to the microorganism and the strain.
Resumo:
The aim of this study was to compare the effects of barbiturate, benzodiazepine and ketamine on flash-evoked potentials (F-VEP) in adult rabbits. A total of 36 animals were studied, 16 after pentobarbital endovenous (EV) inffusion, 10 after midazolam EV administration, and 10 after ketamine EV inffusion. Pentobarbital induced triphasic F-VEP, first negative (N1), secondpositive (P1), third negative (N2) waves, all with large amplitudes and P1 with well-defined morphology. Mean P1 latency was 33ms. Midazolam induced similar but less defind triphasic waves, with mean latency of 27ms. Ketamine induced poliphasic and poorly defined F-VEP, with mean first positive (P1) latency of 27ms. Statistical analysis showed more elongated latency for the pentobarbital group than the midazolam and ketamine groups. The results of this study suggest that the pharmacological effects of pentobarbital and midazolam on GABA neurotransmission in rabbit visual cortex may be different; another neurotransmission system, possibly cholinergic, may be involved. The ketamine effect seen in rabbit visual cortex seems to be different from pentobarbital and midazolam.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The marine environment offers both economic and scientific potential which are relatively untapped from a biotechnological point of view. These environments whilst harsh are ironically fragile and dependent on a harmonious life form balance. Exploitation of natural resources by exhaustive wild harvesting has obvious negative environmental consequences. From a European industry perspective marine organisms are a largely underutilised resource. This is not due to lack of interest but due to a lack of choice the industry faces for cost competitive, sustainable and environmentally conscientious product alternatives. Knowledge of the biotechnological potential of marine organisms together with the development of sustainable systems for their cultivation, processing and utilisation are essential. In 2010, the European Commission recognised this need and funded a collaborative RTD/SME project under the Framework 7-Knowledge Based Bio-Economy (KBBE) Theme 2 Programme 'Sustainable culture of marine microorganisms, algae and/or invertebrates for high value added products'. The scope of that project entitled 'Sustainable Production of Biologically Active Molecules of Marine Based Origin' (BAMMBO) is outlined. Although the Union is a global leader in many technologies, it faces increasing competition from traditional rivals and emerging economies alike and must therefore improve its innovation performance. For this reason innovation is placed at the heart of a European Horizon 2020 Strategy wherein the challenge is to connect economic performance to eco performance. This article provides a synopsis of the research activities of the BAMMBO project as they fit within the wider scope of sustainable environmentally conscientious marine resource exploitation for high-value biomolecules. © 2013 Elsevier B.V.
Resumo:
The knowledge of the mechanisms underlying circulating volume control may be achieved by stretching a balloon placed at the junction of the superior vena cava-right atrial junction (SVC-RAJ). We investigated whether the inflation of a balloon at the SVC-RAJ inhibits the intake of 0.3M NaCl induced by GABAA receptor activation in the lateral parabrachial nucleus (LPBN) in euhydrated and satiated rats. Male Wistar rats (280-300g) with bilateral stainless steel LPBN cannulae and balloons implanted at the SVC-RAJ were used. Bilateral injections of the GABAA receptor agonist muscimol (0.5ηmol/0.2l) in the LPBN with deflated balloons increased intake of 0.3M NaCl (30.1±3.9 vs. saline: 2.2±0.7)ml/210min, n=8) and water (17.7±1.9 vs. saline: 2.9±0.5ml/210min). Conversely, 0.3M NaCl (27.8±2.1ml/210min) and water (22.8±2.3ml/210min) intake were not affected in rats with inflated balloons at the SVC-RAJ. The results show that sodium and water intake induced by muscimol injected into the LPBN was not affected by balloon inflation at the SVC-RAJ. We suggest that the blockade of LPBN neuronal activity with muscimol injections impairs inhibitory mechanisms activated by signals from cardiopulmonary volume receptors determined by balloon inflation. © 2013 The Authors.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
O ácido γ-aminobutírico (GABA) e o glutamato são, respectivamente, os principais neurotransmissores inibitório e excitatório no Sistema Nervoso Central (SNC) e são fundamentais para o processamento visual. Estudos revelam que o glutamato induz liberação de GABA na retina. Trabalhos prévios também apontam que compostos tióis regulam a liberação de GABA, mas ainda não são totalmente esclarecidos os efeitos de tióis (-SH) sobre os níveis endógenos deste neurotransmissor na retina. Neste intermédio, a glutationa (GSH) além de ser o mais importante dos compostos tióis, vem demonstrando exercer um papel neuromodulador na liberação de neurotransmissores. Desta forma, o objetivo deste trabalho foi avaliar um possível efeito modulador de GSH sobre a liberação de GABA mediada por glutamato em retinas de embrião de galinha. Para isso, utilizamos como modelo experimental tecido retiniano íntegro de embrião de galinha, com sete ou oito dias de desenvolvimento. Nos ensaios de liberação de GABA, as retinas foram tratadas com GSH (100 e 500 μM); glutamato (50 e 500 μM) e Butionina Sulfoximina (BSO), inibidor da síntese de glutationa, (50 μM) por 15 minutos, e os níveis de GABA liberado para o meio extracelular foram quantificados por Cromatografia Líquida de Alta Eficácia (CLAE). Para experimentos de liberação de compostos tióis (–SH), as retinas foram incubadas com glutamato (100 μM) com ou sem Na+ por 15 minutos, e os seus níveis extracelulares foram determinados pela reação com DTNB e quantificados por espectrofotometria (412 nm). Os resultados revelam que o glutamato, assim como GSH, liberam GABA. Nossos dados também demonstram que BSO atenua a liberação de GABA promovida por glutamato. Além disso, demonstramos que glutamato induz liberação de compostos tióis independentemente de sódio. Sendo assim, é sabido que glutamato é capaz de liberar GABA e tióis; dentre estes, GSH é o mais abundante e responsável por também liberar GABA. Sabe-se também que uma vez inibida a síntese de GSH por BSO, a liberação de GABA induzida por glutamato é atenuada. Então, se sugere uma possível modulação de GSH na liberação de GABA induzida por glutamato, em retinas íntegras de embrião de galinha.
Resumo:
The neural retina is a highly complex tissue composed of excitatory and inhibitory neurons and glial cells. Glutamate, the main excitatory neurotransmitter, mediates information transfer from photoreceptors, bipolar cells, and ganglion cells, whereas interneurons, mainly amacrine and horizontal cells, use γ-aminobutyric acid (GABA), the main inhibitory neurotransmitter. In this review we place an emphasis on glutamate and GABA transporters as highly regulated molecules that play fundamental roles in neurotransmitter clearance, neurotransmitter release, and oxidative stress. We pharmacologically characterized glutamate transporters in chicken retina cells and identified two glutamate transporters: one Na+-dependent transporter and one Na+-independent transporter. The Na+-dependent uptake system presented characteristics related to the high-affinity xAG- system (EAAT1), and the Na+-independent uptake system presented characteristics related to the xCG- system, which highly contributes to glutamate transport in the retina. Glutamate shares the xCG- system with another amino acid, L-cysteine, suggesting the possible involvement of glutathione. Both transporter proteins are present mainly in Müller glial cells. GABA transporters (GATs) mediate high-affinity GABA uptake from the extracellular space and terminate the synaptic action of GABA in the central nervous system. GABA transporters can be modulated by molecules that act on specific sites to promote transporter phosphorylation and dephosphorylation. In addition to a role in the clearance of GABA, GATs may also release GABA through a reverse transport mechanism. In the chicken retina, a GAT-1 blocker, but not GAT2/3 blocker, was shown to inhibit GABA uptake, suggesting that GABA release from retina cells is mainly mediated by a GAT-1-like transporter.
Resumo:
Pós-graduação em Ciência Animal - FMVA
Resumo:
We examined the effects of beta-pompilidotoxin (beta-PMTX), a neurotoxin derived from wasp venom. on synaptic transmission in the mammalian central nervous system (CNS). Using hippocampal slice preparations of rodents, we made both extracellular and intracellular recordings from the CA1 pyramidal neurons in response to stimulation of the Schaffer collateral/commissural fibers. Application of 5-10 muM beta-PMTX enhanced excitatory postsynaptic potentials (EPSPs) but suppressed the fast component of the inhibitory postsynaptic potentials (IPSPs). In the presence of 10 muM bicuculline, beta-PMTX potentiated EPSPs that were composed of both non-NMDA and NMDA receptor-mediated potentials. Potentiation of EPSPs was originated by repetitive firings of the prosynaptic axons, causing Summation of EPSPs. In the presence of 10 muM CNQX and 50 muM APV, beta-PMTX suppressed GABA(A) receptor-mediated fast IPSPs but retained GABA(B) receptor-mediated slow IPSPs. Our results suggest that beta-PMTX facilitates excitatory synaptic transmission by a presynaptic mechanism and that it causes overexcitation followed by block of the activity of some population of interneurons which regulate the activity of GABA(A) receptors. (C) 2001 Published by Elsevier B.V. Ireland Ltd and the Japan Neuroscience Society.
Resumo:
The mesopontine rostromedial tegmental nucleus (RMTg) is a mostly ?-aminobutyric acid (GABA)ergic structure believed to be a node for signaling aversive events to dopamine (DA) neurons in the ventral tegmental area (VTA). The RMTg receives glutamatergic inputs from the lateral habenula (LHb) and sends substantial GABAergic projections to the VTA, which also receives direct projections from the LHb. To further specify the topography of LHb projections to the RMTg and VTA, small focal injections of the anterograde tracer Phaseolus vulgaris leucoagglutinin were aimed at different subdivisions of the LHb. The subnuclear origin of LHb inputs to the VTA and RMTg was then confirmed by injections of the retrograde tracer cholera toxin subunit b into the VTA or RMTg. Furthermore, we compared the topographic position of retrogradely labeled neurons in the RMTg resulting from VTA injections with that of anterogradely labeled axons emerging from the LHb. As revealed by anterograde and retrograde tracing, LHb projections were organized in a strikingly topographic manner, with inputs to the RMTg mostly arising from the lateral division of the LHb (LHbL), whereas inputs to the VTA mainly emerged from the medial division of the LHb (LHbM). In the RMTg, profusely branched LHb axons were found in close register with VTA projecting neurons and were frequently apposed to the latter. Overall, our findings demonstrate that LHb inputs to the RMTg and VTA arise from different divisions of the LHb and provide direct evidence for a disynaptic pathway that links the LHbL to the VTA via the RMTg. J. Comp. Neurol. 520:12781300, 2012. (C) 2011 Wiley Periodicals, Inc.