755 resultados para Functionalized
Resumo:
The present work reports a convenient route for the immobilisation of a phenanthroline-bis triazine (C1-BTPhen) group on the surface of zirconia-coated maghemite (γ-Fe2O3) magnetic nanoparticles. The magnetic nanoparticles functionalized with C1-BTPhen were able to co-extract Am(III) and Eu(III) from nitric acid (HNO3). The extraction efficiency of these C1-BTPhen-functionalized magnetic nanoparticles for both Am(III) and Eu(III) was 20% at 4M HNO3. The interaction between C1-BTPhen and metal cations is reversible. These functionalized magnetic nanoparticles can be used for the co-extraction of traces of Am(III) and Eu(III).
Resumo:
Thiol- and acrylate-functionalized nanoparticles have been synthesized from pentaerythritol tetrakis(3-mercapto-propionate) and pentaerythritol tetraacrylate using thiol-ene click chemistry. Using Raman and 1H NMR spectroscopy as well as Ellman's assay, it was demonstrated that excess pentaerythritol tetraacrylate in the feed mixture led to nanoparticles with free acrylate groups on their surface, whereas nanoparticles with thiolated surfaces could be synthesized using feed mixtures with excess pentaerythritol tetrakis(3-mercapto-propionate). The possibility of fluorescent labelling of thiolated nanoparticles has been demonstrated through their reaction with fluorescein-5-maleimide. The thiolated nanoparticles were found to be mucoadhesive and exhibited retention on mucosal surface of porcine urinary bladder.
Resumo:
Novel acid-terminated hyperbranched polymers (HBPs) containing adipic acid and oxazoline monomers derived from oleic and linoleic acid have been synthesized via a bulk polymerization procedure. Branching was achieved as a consequence of an acid-catalyzed opening of the oxazoline ring to produce a trifunctional monomer in situ which delivered branching levels of >45% as determined by 1H and 13C NMR spectroscopy. The HBPs were soluble in common solvents, such as CHCl3, acetone, tetrahydrofuran, dimethylformamide, and dimethyl sulfoxide and were further functionalized by addition of citronellol to afford white-spirit soluble materials that could be used in coating formulations. During end group modification, a reduction in branching levels of the HBPs (down to 12–24%) was observed, predominantly on account of oxazoline ring reformation and trans-esterification processes under the reaction conditions used. In comparison to commercial alkyd resin paint coatings, formulations of the citronellol-functionalized hyperbranched materials blended with a commercial alkyd resin exhibited dramatic decreases of the blend viscosity when the HBP content was increased. The curing characteristics of the HBP/alkyd blend formulations were studied by dynamic mechanical analysis which revealed that the new coatings cured more quickly and produced tougher materials than otherwise identical coatings prepared from only the commercial alkyd resins.
Resumo:
A pyridyl-functionalized diiron dithiolate complex, [μ-(4-pyCH2−NMI-S2)Fe2(CO)6] (3, py = pyridine(ligand), NMI = naphthalene monoimide) was synthesized and fully characterized. In the presence of zinc tetraphenylporphyrin (ZnTPP), a self-assembled 3·ZnTPP complex was readily formed in CH2Cl2 by the coordination of the pyridyl nitrogen to the porphyrin zinc center. Ultrafast photoinduced electron transfer from excited ZnTPP to complex 3 in the supramolecular assembly was observed in real time by monitoring the ν(CO) and ν(CO)NMI spectral changes with femtosecond time-resolved infrared (TRIR) spectroscopy. We have confirmed that photoinduced charge separation produced the monoreduced species by comparing the time-resolved IR spectra with the conventional IR spectra of 3•− generated by reversible electrochemical reduction. The lifetimes for the charge separation and charge recombination processes were found to be τCS = 40 ± 3 ps and τCR = 205 ± 14 ps, respectively. The charge recombination is much slower than that in an analogous covalent complex, demonstrating the potential of a supramolecular approach to extend the lifetime of the chargeseparated state in photocatalytic complexes. The observed vibrational frequency shifts provide a very sensitive probe of the delocalization of the electron-spin density over the different parts of the Fe2S2 complex. The TR and spectro-electrochemical IR spectra, electron paramagnetic resonance spectra, and density functional theory calculations all show that the spin density in 3•− is delocalized over the diiron core and the NMI bridge. This delocalization explains why the complex exhibits low catalytic dihydrogen production even though it features a very efficient photoinduced electron transfer. The ultrafast porphyrin-to-NMIS2−Fe2(CO)6 photoinduced electron transfer is the first reported example of a supramolecular Fe2S2-hydrogenase model studied by femtosecond TRIR spectroscopy. Our results show that TRIR spectroscopy is a powerful tool to investigate photoinduced electron transfer in potential dihydrogen-producing catalytic complexes, and that way to optimize their performance by rational approaches.
Resumo:
A mild method for regioselective formation of 1,5-substituted 1,2,3-triazoles is described. The zinc-mediated reaction works at room temperature and is successful across a wide range of azido/alkynyl substrates. Additionally, the triazole 4-position can be further functionalized through the intermediate aryl-zinc to accommodate a diverse three-component coupling strategy.
Resumo:
Amyloid fibrils are formed by a model surfactant-like peptide (Ala)10-(His)6 containing a hexahistidine tag. This peptide undergoes a remarkable two-step self-assembly process with two distinct critical aggregation concentrations (cac’s), probed by fluorescence techniques. A micromolar range cac is ascribed to the formation of prefibrillar structures, whereas a millimolar range cac is associated with the formation of well-defined but more compact fibrils. We examine the labeling of these model tagged amyloid fibrils using Ni-NTA functionalized gold nanoparticles (Nanogold). Successful labeling is demonstrated via electron microscopy imaging. The specificity of tagging does not disrupt the β-sheet structure of the peptide fibrils. Binding of fibrils and Nanogold is found to influence the circular dichroism associated with the gold nanoparticle plasmon absorption band. These results highlight a new approach to the fabrication of functionalized amyloid fibrils and the creation of peptide/nanoparticle hybrid materials.
Resumo:
This paper describes the use of bifunctional thiourea catalysts in the intramolecular reaction of a nitronate with conjugated ketones to generate the corresponding γ-nitroketones. In contrast to our previous studies in this area, we obtained the cis-functionalized systems as the major diastereoisomers in good yields and reasonable selectivities.
Resumo:
A range of carbamate functionalized 1,4-disubstituted triazoles featuring a base sensitive trigger residue, plus a model aromatic amine reporter group, were prepared via copper(I) catalysed azide–alkyne cycloaddition and evaluated for their self-immolative characteristics. This study revealed a clear structure–reactivity relationship, via Hammett analysis, between the structure of the 1,4-disubstituted triazole and the rate of self-immolative release of the amine reporter group, thus demonstrating that under basic conditions this type of triazole derivative has the potential to be employed in a range of chemical release systems.
Resumo:
Ab initio simulations of carbon nanotubes interacting with ascorbic acid and nicotinamide are reported. The electronic transport properties of these systems are studied using a combination of density functional theory and non-equilibrium Green`s functions methods. The adsorptions of both molecules are observed to depend strongly on their functionalization. The interaction through the appropriate functionalized species modifies the structural and electronic properties of the original system, resulting in a chemisorption regime. Changes in the electronic transport properties are also observed, with reductions on the total electronic transmission probabilities. Nevertheless, when the molecules interact through the pristine form, a physisorption interaction is observed with insignificant structural and electronic transport changes. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
We performed a first principles total energy investigation on the structural, electronic, and vibrational propel ties of adamantane molecules, functionalized with amine and ethanamine groups. We computed the vibrational signatures of amantadine and rimanadine isomers with the functional groups bonded to clinic:ill carbon sites By comparing Out results with recent infrared and Raman spectroscopic data, we discuss the possible presence of different isomers in experimental samples.
Resumo:
In this paper the large-scale mass transport mechanism is used to microstructure azopolymeric films, aiming at controllable hydrophobic surfaces. Using an Ar(+) laser with intensity of 70 mW/cm(2), we produced egg-crate-like surfaces with periods from 1.0 to 3.5 mu m that present distinct wetting properties. The static contact angle of water was measured on the microstructured surfaces, and the results revealed an increase of approximately 9 degrees for a surface pattern period of 2 mu m. Our results indicate the use of the microstructuring method described here for the fabrication of devices with controllable hydrophobicity.
Resumo:
The control of morphology and coating of metal surfaces is essential for a number of organic electronic devices including photovoltaic cells and sensors. In this study, we monitor the functionalization of gold surfaces with 11-mercaptoundecanoic acid (MUA, HS(CH(2))(10)CO(2)H) and cysteamine, aiming at passivating the surfaces for application in surface plasmon resonance (SPR) biosensors. Using polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS), cyclic voltammetry, atomic force microscopy and quartz crystal microbalance, we observed a time-dependent organization process of the adsorbed MUA monolayer with alkyl chains perpendicular to the gold surface. Such optimized condition for surface passivation was obtained with a systematic search for experimental parameters leading to the lowest electrochemical signal of the functionalized gold electrode. The ability to build supramolecular architectures was also confirmed by detecting with PM-IRRAS the adsorption of streptavidin on the MUA-functionalized gold. As the approaches used for surface functionalization and its verification with PM-IRRAS are generic, one may now envisage monitoring the fabrication of tailored electrodes for a variety of applications.
Resumo:
The assembly of carbon nanotubes (CNTs) into nanostructured films is attractive for producing functionalized hybrid materials and (bio-)chemical sensors, but this requires experimental methods that allow for control of molecular architecturcs. In this study, we exploit the layer-by-layer (LbL) technique to obtain two types of sensors incorporating CNTs. In the first, LbL films of alternating layers of multi-walled carbon nanotubes (MWNTs) dispersed in polyarninoamide (PAMAM) dendrimers and nickel phthalocyanine (NiTsPc) were used in amperometric detection of the neurotransmitter dopamine (DA). The electrochemical properties evaluated with cyclic voltammetry indicated that the incorporation of MWNTs in the PAMAM-NT/NiTsPc LbL films led to a 3-fold increase in the peak current, in addition to a decrease of 50 mV in the oxidation potential of DA. The latter allowed detection of DA even in the presence of ascorbic acid (AA), a typical interferent for DA. Another LbL film was obtained with layers of PAMAM and single-walled carbon nanotubes (SWNTs) employed in field-effect-devices using a capacitive electrolyte-insulator-semiconductor structure (EIS). The adsorption of the film components was monitored by measuring the flat-band voltage shift in capacitance-voltage (C-P) curves, caused by the charges from the components. Constant capacitance (ConCap) measurements showed that the EISPAMAM/SWNT film displayed a high pH sensitivity (ca. 54.5 mV/pH), being capable of detecting penicillin G between 10(-4) mol L(-1) and 10(-2) mol L-1, when a layer of penicillinase was adsorbed atop the PAMAM/SWNT film. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Oligonucleotides have unique molecular recognition properties, being involved in biological mechanisms such as cell-surface receptor recognition or gene silencing. For their use in human therapy for drug or gene delivery, the cell membrane remains a barrier, but this can be obviated by grafting a hydrophobic tail to the oligonucleotide. Here we demonstrate that two oligonucleotides, one consisting of 12 guanosine units (G(12)), and the other one consisting of five adenosine and seven guanosine (A(5)G(7)) units, when functionalized with poly(butadiene), namely PB-G(12) and PB-A(5)G(7), can be inserted into Langmuir monolayers of dipalmitoyl phosphatidyl choline (DPPC), which served as a cell membrane model. PB-G(12) and PB-A(5)G(7) were found to affect the DPPC monolayer even at high surface pressures. The effects from PB-G(12) were consistently stronger, particularly in reducing the elasticity of the DPPC monolayers, which may have important biological implications. Multilayers of DPPC and nucleotide-based copolymers could be adsorbed onto solid supports, in the form of Y-type LB films, in which the molecular-level interaction led to lower energies in the vibrational spectra of the nucleotide-based copolymers. This successful deposition of solid films opens the way for devices to be produced which exploit the molecular recognition properties of the nucleotides. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Materials used in current technological approaches for the removal of mercury lack selectivity. Given that this is one of the main features of supramolecular chemistry, receptors based on calix[4]arene and calix[4]resorcarene containing functional groups able to interact selectively with polluting ions while discriminating against biologically essential ones were designed. Thus two receptors, a partially functionalized calix[4]arene derivative, namely, 5,11,17,23-tetra-tert-butyl [25-27-bis(diethyl thiophosphate amino)dihydroxy] calix[4]arene (1) and a fully functionalized calix[4]resorcarene, 4,6,10,12,16,18,22,24-diethyl thiophosphate calix[4]resorcarene (2) are introduced. Mercury(II) was the identified target due to the environmental and health problems associated with its presence in water Thus following the synthesis and characterization of 1 and 2 in solution ((1)HNMR) and in the solid state (X-ray crystallography) the sequence of experimental events leading to cation complexation studies in acetonitrile and methanol ((1)H NMR, conductance, potentiometric, and calorimetric measurements) with the aim of assessing their behavior as mercury selective receptors are described. The cation selectivity pattern observed in acetonitrile follows the sequence Hg(II) > Cu(II) > Ag(I). In methanol 1 is also selective for Hg(II) relative to Ag(I) but no interaction takes place between this receptor and Cu(II) in this solvent. Based on previous results and experimental facts shown in this paper, it is concluded that the complexation observed with Cu(II) in acetonitrile occurs through the acetonitrile-receptor adduct rather than through the free ligand. Receptor 2 has an enhanced capacity for uptaking Hg(II) but forms metalate complexes with Cu(II). These studies in solution guided the inmobilization of receptor 1 into a silica support to produce a new and recyclable material for the removal of Hg(II) from water. An assessment on its capacity to extract this cation from water relative to Cu(II) and Ag (I) shows that the cation selectivity pattern of the inmobilized receptor is the same as that observed for the free receptor in methanol. These findings demonstrate that fundamental studies play a critical role in the selection of the receptor to be attached to silicates as well as in the reaction medium used for the synthesis of the new decontaminating agent.