899 resultados para FEEDBACK-CONTROL
Resumo:
The work presented herein focused on the automation of coordination-driven self assembly, exploring methods that allow syntheses to be followed more closely while forming new ligands, as part of the fundamental study of the digitization of chemical synthesis and discovery. Whilst the control and understanding of the principle of pre-organization and self-sorting under non-equilibrium conditions remains a key goal, a clear gap has been identified in the absence of approaches that can permit fast screening and real-time observation of the reaction process under different conditions. A firm emphasis was thus placed on the realization of an autonomous chemical robot, which can not only monitor and manipulate coordination chemistry in real-time, but can also allow the exploration of a large chemical parameter space defined by the ligand building blocks and the metal to coordinate. The self-assembly of imine ligands with copper and nickel cations has been studied in a multi-step approach using a self-built flow system capable of automatically controlling the liquid-handling and collecting data in real-time using a benchtop MS and NMR spectrometer. This study led to the identification of a transient Cu(I) species in situ which allows for the formation of dimeric and trimeric carbonato bridged Cu(II) assemblies. Furthermore, new Ni(II) complexes and more remarkably also a new binuclear Cu(I) complex, which usually requires long and laborious inert conditions, could be isolated. The study was then expanded to the autonomous optimization of the ligand synthesis by enabling feedback control on the chemical system via benchtop NMR. The synthesis of new polydentate ligands has emerged as a result of the study aiming to enhance the complexity of the chemical system to accelerate the discovery of new complexes. This type of ligand consists of 1-pyridinyl-4-imino-1,2,3-triazole units, which can coordinate with different metal salts. The studies to test for the CuAAC synthesis via microwave lead to the discovery of four new Cu complexes, one of them being a coordination polymer obtained from a solvent dependent crystallization technique. With the goal of easier integration into an automated system, copper tubing has been exploited as the chemical reactor for the synthesis of this ligand, as it efficiently enhances the rate of the triazole formation and consequently promotes the formation of the full ligand in high yields within two hours. Lastly, the digitization of coordination-driven self-assembly has been realized for the first time using an in-house autonomous chemical robot, herein named the ‘Finder’. The chemical parameter space to explore was defined by the selection of six variables, which consist of the ligand precursors necessary to form complex ligands (aldehydes, alkineamines and azides), of the metal salt solutions and of other reaction parameters – duration, temperature and reagent volumes. The platform was assembled using rounded bottom flasks, flow syringe pumps, copper tubing, as an active reactor, and in-line analytics – a pH meter probe, a UV-vis flow cell and a benchtop MS. The control over the system was then obtained with an algorithm capable of autonomously focusing the experiments on the most reactive region (by avoiding areas of low interest) of the chemical parameter space to explore. This study led to interesting observations, such as metal exchange phenomena, and also to the autonomous discovery of self assembled structures in solution and solid state – such as 1-pyridinyl-4-imino-1,2,3-triazole based Fe complexes and two helicates based on the same ligand coordination motif.
Resumo:
Determination of combustion metrics for a diesel engine has the potential of providing feedback for closed-loop combustion phasing control to meet current and upcoming emission and fuel consumption regulations. This thesis focused on the estimation of combustion metrics including start of combustion (SOC), crank angle location of 50% cumulative heat release (CA50), peak pressure crank angle location (PPCL), and peak pressure amplitude (PPA), peak apparent heat release rate crank angle location (PACL), mean absolute pressure error (MAPE), and peak apparent heat release rate amplitude (PAA). In-cylinder pressure has been used in the laboratory as the primary mechanism for characterization of combustion rates and more recently in-cylinder pressure has been used in series production vehicles for feedback control. However, the intrusive measurement with the in-cylinder pressure sensor is expensive and requires special mounting process and engine structure modification. As an alternative method, this work investigated block mounted accelerometers to estimate combustion metrics in a 9L I6 diesel engine. So the transfer path between the accelerometer signal and the in-cylinder pressure signal needs to be modeled. Depending on the transfer path, the in-cylinder pressure signal and the combustion metrics can be accurately estimated - recovered from accelerometer signals. The method and applicability for determining the transfer path is critical in utilizing an accelerometer(s) for feedback. Single-input single-output (SISO) frequency response function (FRF) is the most common transfer path model; however, it is shown here to have low robustness for varying engine operating conditions. This thesis examines mechanisms to improve the robustness of FRF for combustion metrics estimation. First, an adaptation process based on the particle swarm optimization algorithm was developed and added to the single-input single-output model. Second, a multiple-input single-output (MISO) FRF model coupled with principal component analysis and an offset compensation process was investigated and applied. Improvement of the FRF robustness was achieved based on these two approaches. Furthermore a neural network as a nonlinear model of the transfer path between the accelerometer signal and the apparent heat release rate was also investigated. Transfer path between the acoustical emissions and the in-cylinder pressure signal was also investigated in this dissertation on a high pressure common rail (HPCR) 1.9L TDI diesel engine. The acoustical emissions are an important factor in the powertrain development process. In this part of the research a transfer path was developed between the two and then used to predict the engine noise level with the measured in-cylinder pressure as the input. Three methods for transfer path modeling were applied and the method based on the cepstral smoothing technique led to the most accurate results with averaged estimation errors of 2 dBA and a root mean square error of 1.5dBA. Finally, a linear model for engine noise level estimation was proposed with the in-cylinder pressure signal and the engine speed as components.
Resumo:
Neste artigo apresentamos a concepção e validação dum programa de estratégias de aprendizagem promotor do sucesso académico, bem como do bem-estar pessoal e escolar. Cada conteúdo de aprendizagem utiliza uma estratégia com 8 estádios: Pré-teste e Contrato, Descrição, Modelação, Prática Verbal, Prática Controlada e Feedback, Prática Avançada e Feedback, Pós-teste e Contratos, e Generalização. Trata-se dum estudo quasi-experimental, com pré e pós-teste, grupo experimental e de controlo. Avaliou-se o efeito do programa na (a) compreensão e expressão verbal; (b) aproveitamento escolar; (c) auto-estima, hábitos de estudo; (d) atribuições causais do sucesso; e (e) opiniões dos professores. O GE (n=110) melhorou significativamente comparativamente ao GC (n=99) indicando que o Programa traz benefícios escolares e pessoais aos estudantes portugueses.
Resumo:
In practical cases for active noise control (ANC), the secondary path has usually a time varying behavior. For these cases, an online secondary path modeling method that uses a white noise as a training signal is required to ensure convergence of the system. The modeling accuracy and the convergence rate are increased when a white noise with a larger variance is used. However, the larger variance increases the residual noise, which decreases performance of the system and additionally causes instability problem to feedback structures. A sudden change in the secondary path leads to divergence of the online secondary path modeling filter. To overcome these problems, this paper proposes a new approach for online secondary path modeling in feedback ANC systems. The proposed algorithm uses the advantages of white noise with larger variance to model the secondary path, but the injection is stopped at the optimum point to increase performance of the algorithm and to prevent the instability effect of the white noise. In this approach, instead of continuous injection of the white noise, a sudden change in secondary path during the operation makes the algorithm to reactivate injection of the white noise to correct the secondary path estimation. In addition, the proposed method models the secondary path without the need of using off-line estimation of the secondary path. Considering the above features increases the convergence rate and modeling accuracy, which results in a high system performance. Computer simulation results shown in this paper indicate effectiveness of the proposed method.
Resumo:
In many active noise control (ANC) applications, an online secondary path modelling method that uses a white noise as a training signal is required. This paper proposes a new feedback ANC system. Here we modified both the FxLMS and the VSS-LMS algorithms to raised noise attenuation and modelling accuracy for the overall system. The proposed algorithm stops injection of the white noise at the optimum point and reactivate the injection during the operation, if needed, to maintain performance of the system. Preventing continuous injection of the white noise increases the performance of the proposed method significantly and makes it more desirable for practical ANC systems. Computer simulation results shown in this paper indicate effectiveness of the proposed method.
Resumo:
In Chapters 1 through 9 of the book (with the exception of a brief discussion on observers and integral action in Section 5.5 of Chapter 5) we considered constrained optimal control problems for systems without uncertainty, that is, with no unmodelled dynamics or disturbances, and where the full state was available for measurement. More realistically, however, it is necessary to consider control problems for systems with uncertainty. This chapter addresses some of the issues that arise in this situation. As in Chapter 9, we adopt a stochastic description of uncertainty, which associates probability distributions to the uncertain elements, that is, disturbances and initial conditions. (See Section 12.6 for references to alternative approaches to model uncertainty.) When incomplete state information exists, a popular observer-based control strategy in the presence of stochastic disturbances is to use the certainty equivalence [CE] principle, introduced in Section 5.5 of Chapter 5 for deterministic systems. In the stochastic framework, CE consists of estimating the state and then using these estimates as if they were the true state in the control law that results if the problem were formulated as a deterministic problem (that is, without uncertainty). This strategy is motivated by the unconstrained problem with a quadratic objective function, for which CE is indeed the optimal solution (˚Astr¨om 1970, Bertsekas 1976). One of the aims of this chapter is to explore the issues that arise from the use of CE in RHC in the presence of constraints. We then turn to the obvious question about the optimality of the CE principle. We show that CE is, indeed, not optimal in general. We also analyse the possibility of obtaining truly optimal solutions for single input linear systems with input constraints and uncertainty related to output feedback and stochastic disturbances.We first find the optimal solution for the case of horizon N = 1, and then we indicate the complications that arise in the case of horizon N = 2. Our conclusion is that, for the case of linear constrained systems, the extra effort involved in the optimal feedback policy is probably not justified in practice. Indeed, we show by example that CE can give near optimal performance. We thus advocate this approach in real applications.
Resumo:
This paper addresses the issue of output feedback model predictive control for linear systems with input constraints and stochastic disturbances. We show that the optimal policy uses the Kalman filter for state estimation, but the resultant state estimates are not utilized in a certainty equivalence control law