959 resultados para Expenditure-based segmentation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of wireless networks is limited by multiple access interference (MAI) in the traditional communication approach where the interfered signals of the concurrent transmissions are treated as noise. In this paper, we treat the interfered signals from a new perspective on the basis of additive electromagnetic (EM) waves and propose a network coding based interference cancelation (NCIC) scheme. In the proposed scheme, adjacent nodes can transmit simultaneously with careful scheduling; therefore, network performance will not be limited by the MAI. Additionally we design a space segmentation method for general wireless ad hoc networks, which organizes network into clusters with regular shapes (e.g., square and hexagon) to reduce the number of relay nodes. The segmentation methodworks with the scheduling scheme and can help achieve better scalability and reduced complexity. We derive accurate analytic models for the probability of connectivity between two adjacent cluster heads which is important for successful information relay. We proved that with the proposed NCIC scheme, the transmission efficiency can be improved by at least 50% for general wireless networks as compared to the traditional interference avoidance schemes. Numeric results also show the space segmentation is feasible and effective. Finally we propose and discuss a method to implement the NCIC scheme in a practical orthogonal frequency division multiplexing (OFDM) communications networks. Copyright © 2009 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study is threefold: (1) to identify the underlying benefits sought by international visitors to Macau, China, which has emerged as a popular gambling destination in Asia; (2) to segment tourists visiting Macau by employing a cluster analysis based on the benefits sought; and (3) to examine any salient differences between the segment groups with regard to their behavioral characteristics, socio-economic characteristics, and demographic profiles. A convenience sample was used to collect data in the Macau International Airport, in the Macau Ferry Terminal, and at the border gate with Mainland China. A total 1,513 useful surveys were retained for data analysis. Cluster analysis discloses four distinct clusters: "convention and business seekers," "family and vacation seekers," "gambling and shopping seekers," and "multi-purpose seekers." Based on the results of our findings, several managerial implications are discussed. © Taylor & Francis Group, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): I.7, I.7.5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel approach to the computation of primitive geometrical structures, where no prior knowledge about the visual scene is available and a high level of noise is expected. We based our work on the grouping principles of proximity and similarity, of points and preliminary models. The former was realized using Minimum Spanning Trees (MST), on which we apply a stable alignment and goodness of fit criteria. As for the latter, we used spectral clustering of preliminary models. The algorithm can be generalized to various model fitting settings, without tuning of run parameters. Experiments demonstrate the significant improvement in the localization accuracy of models in plane, homography and motion segmentation examples. The efficiency of the algorithm is not dependent on fine tuning of run parameters like most others in the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present an innovative topic segmentation system based on a new informative similarity measure that takes into account word co-occurrence in order to avoid the accessibility to existing linguistic resources such as electronic dictionaries or lexico-semantic databases such as thesauri or ontology. Topic segmentation is the task of breaking documents into topically coherent multi-paragraph subparts. Topic segmentation has extensively been used in information retrieval and text summarization. In particular, our architecture proposes a language-independent topic segmentation system that solves three main problems evidenced by previous research: systems based uniquely on lexical repetition that show reliability problems, systems based on lexical cohesion using existing linguistic resources that are usually available only for dominating languages and as a consequence do not apply to less favored languages and finally systems that need previously existing harvesting training data. For that purpose, we only use statistics on words and sequences of words based on a set of texts. This solution provides a flexible solution that may narrow the gap between dominating languages and less favored languages thus allowing equivalent access to information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Segmentation is an important step in many medical imaging applications and a variety of image segmentation techniques exist. One group of segmentation algorithms is based on clustering concepts. In this article we investigate several fuzzy c-means based clustering algorithms and their application to medical image segmentation. In particular we evaluate the conventional hard c-means (HCM) and fuzzy c-means (FCM) approaches as well as three computationally more efficient derivatives of fuzzy c-means: fast FCM with random sampling, fast generalised FCM, and a new anisotropic mean shift based FCM. © 2010 by IJTS, ISDER.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation develops an innovative approach towards less-constrained iris biometrics. Two major contributions are made in this research endeavor: (1) Designed an award-winning segmentation algorithm in the less-constrained environment where image acquisition is made of subjects on the move and taken under visible lighting conditions, and (2) Developed a pioneering iris biometrics method coupling segmentation and recognition of the iris based on video of moving persons under different acquisitions scenarios. The first part of the dissertation introduces a robust and fast segmentation approach using still images contained in the UBIRIS (version 2) noisy iris database. The results show accuracy estimated at 98% when using 500 randomly selected images from the UBIRIS.v2 partial database, and estimated at 97% in a Noisy Iris Challenge Evaluation (NICE.I) in an international competition that involved 97 participants worldwide involving 35 countries, ranking this research group in sixth position. This accuracy is achieved with a processing speed nearing real time. The second part of this dissertation presents an innovative segmentation and recognition approach using video-based iris images. Following the segmentation stage which delineates the iris region through a novel segmentation strategy, some pioneering experiments on the recognition stage of the less-constrained video iris biometrics have been accomplished. In the video-based and less-constrained iris recognition, the test or subject iris videos/images and the enrolled iris images are acquired with different acquisition systems. In the matching step, the verification/identification result was accomplished by comparing the similarity distance of encoded signature from test images with each of the signature dataset from the enrolled iris images. With the improvements gained, the results proved to be highly accurate under the unconstrained environment which is more challenging. This has led to a false acceptance rate (FAR) of 0% and a false rejection rate (FRR) of 17.64% for 85 tested users with 305 test images from the video, which shows great promise and high practical implications for iris biometrics research and system design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given the importance of color processing in computer vision and computer graphics, estimating and rendering illumination spectral reflectance of image scenes is important to advance the capability of a large class of applications such as scene reconstruction, rendering, surface segmentation, object recognition, and reflectance estimation. Consequently, this dissertation proposes effective methods for reflection components separation and rendering in single scene images. Based on the dichromatic reflectance model, a novel decomposition technique, named the Mean-Shift Decomposition (MSD) method, is introduced to separate the specular from diffuse reflectance components. This technique provides a direct access to surface shape information through diffuse shading pixel isolation. More importantly, this process does not require any local color segmentation process, which differs from the traditional methods that operate by aggregating color information along each image plane. ^ Exploiting the merits of the MSD method, a scene illumination rendering technique is designed to estimate the relative contributing specular reflectance attributes of a scene image. The image feature subset targeted provides a direct access to the surface illumination information, while a newly introduced efficient rendering method reshapes the dynamic range distribution of the specular reflectance components over each image color channel. This image enhancement technique renders the scene illumination reflection effectively without altering the scene’s surface diffuse attributes contributing to realistic rendering effects. ^ As an ancillary contribution, an effective color constancy algorithm based on the dichromatic reflectance model was also developed. This algorithm selects image highlights in order to extract the prominent surface reflectance that reproduces the exact illumination chromaticity. This evaluation is presented using a novel voting scheme technique based on histogram analysis. ^ In each of the three main contributions, empirical evaluations were performed on synthetic and real-world image scenes taken from three different color image datasets. The experimental results show over 90% accuracy in illumination estimation contributing to near real world illumination rendering effects. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Efficient effort expenditure to obtain rewards is critical for optimal goal-directed behavior and learning. Clinical observation suggests that individuals with autism spectrum disorders (ASD) may show dysregulated reward-based effort expenditure, but no behavioral study to date has assessed effort-based decision-making in ASD. METHODS: The current study compared a group of adults with ASD to a group of typically developing adults on the Effort Expenditure for Rewards Task (EEfRT), a behavioral measure of effort-based decision-making. In this task, participants were provided with the probability of receiving a monetary reward on a particular trial and asked to choose between either an "easy task" (less motoric effort) for a small, stable reward or a "hard task" (greater motoric effort) for a variable but consistently larger reward. RESULTS: Participants with ASD chose the hard task more frequently than did the control group, yet were less influenced by differences in reward value and probability than the control group. Additionally, effort-based decision-making was related to repetitive behavior symptoms across both groups. CONCLUSIONS: These results suggest that individuals with ASD may be more willing to expend effort to obtain a monetary reward regardless of the reward contingencies. More broadly, results suggest that behavioral choices may be less influenced by information about reward contingencies in individuals with ASD. This atypical pattern of effort-based decision-making may be relevant for understanding the heightened reward motivation for circumscribed interests in ASD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the problem of colorectal tumour segmentation in complex real world imagery. For efficient segmentation, a multi-scale strategy is developed for extracting the potentially cancerous region of interest (ROI) based on colour histograms while searching for the best texture resolution. To achieve better segmentation accuracy, we apply a novel bag-of-visual-words method based on rotation invariant raw statistical features and random projection based l2-norm sparse representation to classify tumour areas in histopathology images. Experimental results on 20 real world digital slides demonstrate that the proposed algorithm results in better recognition accuracy than several state of the art segmentation techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN]Vision-based applications designed for humanmachine interaction require fast and accurate hand detection. However, previous works on this field assume different constraints, like a limitation in the number of detected gestures, because hands are highly complex objects to locate. This paper presents an approach which changes the detection target without limiting the number of detected gestures. Using a cascade classifier we detect hands based on their wrists. With this approach, we introduce two main contributions: (1) a reliable segmentation, independently of the gesture being made and (2) a training phase faster than previous cascade classifier based methods. The paper includes experimental evaluations with different video streams that illustrate the efficiency and suitability for perceptual interfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Melanoma is a type of skin cancer and is caused by the uncontrolled growth of atypical melanocytes. In recent decades, computer aided diagnosis is used to support medical professionals; however, there is still no globally accepted tool. In this context, similar to state-of-the-art we propose a system that receives a dermatoscopy image and provides a diagnostic if the lesion is benign or malignant. This tool is composed with next modules: Preprocessing, Segmentation, Feature Extraction, and Classification. Preprocessing involves the removal of hairs. Segmentation is to isolate the lesion. Feature extraction is considering the ABCD dermoscopy rule. The classification is performed by the Support Vector Machine. Experimental evidence indicates that the proposal has 90.63 % accuracy, 95 % sensitivity, and 83.33 % specificity on a data-set of 104 dermatoscopy images. These results are favorable considering the performance of diagnosis by traditional progress in the area of dermatology

Relevância:

30.00% 30.00%

Publicador:

Resumo:

International audience

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a semi-parametric Algorithm for parsing football video structures. The approach works on a two interleaved based process that closely collaborate towards a common goal. The core part of the proposed method focus perform a fast automatic football video annotation by looking at the enhance entropy variance within a series of shot frames. The entropy is extracted on the Hue parameter from the HSV color system, not as a global feature but in spatial domain to identify regions within a shot that will characterize a certain activity within the shot period. The second part of the algorithm works towards the identification of dominant color regions that could represent players and playfield for further activity recognition. Experimental Results shows that the proposed football video segmentation algorithm performs with high accuracy.