441 resultados para Exciton


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photoluminescence (PL) was investigated in undoped GaN from 4.8 K to room temperature. The 4.8 K spectra exhibited recombinations of free exciton, donor-acceptor pair (DAP), blue and yellow bands (Ybs). The blue band (BB) was also identified to be a DAP recombination. The YB was assigned to a recombination from deep levels. The energy-dispersive X-ray spectroscopy show that C and O are the main residual impurities in undoped GaN and that C concentration is lower in the epilayers with the stronger BB. The electronic structures of native defects, C and O impurities, and their complexes were calculated using ab initio local-density-functional (LDF) methods with linear muffin-tin-orbital and 72-atomic supercell. The theoretical analyses suggest that the electron transitions from O-N states to C-N and to V-Ga states are responsible for DAP and the BB, respectively, and the electron transitions between the inner levels of the C-N-O-N complex may be responsible for the YB in our samples. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper. we investigate the influences of the initial nitridation of sapphire substrates on the optical and structural characterizations in GaN films. Two GaN samples with and without 3 min nitridation process were investigated by photoluminescence (PL) spectroscopy in the temperature range of 12-300 K and double-crystal X-ray diffraction (XRD). In the 12 K PL spectra of the GaN sample without nitridation, four dominant peaks at 3.476, 3.409 3.362 and 3.308 eV were observed, which were assigned to donor bound exciton, excitons bound to stacking faults and extended structural defects. In the sample with nitridation, three peaks at 3.453, 3.365. and 3.308 eV were observed at 12 K, no peak related to stacking faults. XRD results at different reflections showed that there are more stacking faults in the samples without nitridation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photoluminescence (PL) of In0.55Al0.45As/Al0.5Ga0.5As self-assembled quantum dots has been measured at 15 and 80 K under hydrostatic pressure. The lateral size of the dots ranges from 7 to 62 nm. The emissions from the dots with 26, 52 and 62 nm size have a blue shift under pressure, indicating that these quantum dots have the normal type-I structure with lowest conduction band at the Gamma -valley. However, the PL peak of dots with 7 nm diameter moves to lower energy with increasing pressure. It is a typical character for the X-related transition. Then these small dots have a type-II structure with the X-valley as the lowest conduction level. An envelope-function calculation confirms that the Gamma -like exciton transition energy will rise above the X-like transition energy in the In0.55Al0.45As/Al0.5Ga0.5As structure if the dot size is small enough.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CdSe nanoclusters overcoated with CdS shell were prepared with macapoacetic acid as stabilizer. The optical properties of CdSe nanoclusters and the influence of CdS shell on the electronic structures of CdSe cores were studied by optical absorption, photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopies. Based on PL and PLE results and the theoretical calculation on fine structure of bandedge exciton, a model of formation of excimer within the small clusters was proposed to explain the large Stokes shift of luminescence from absorption edge observed in PL results. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this report, we have investigated the temperature and injection power dependent photoluminescence in self-assembled InAs/GaAs quantum dots (QDs) systems with low and high areal density, respectively. It was found that, for the high-density samples, state filling effect and abnormal temperature dependence were interacting. In particular, the injection power-induced variations were most obvious at the temperature interval where carriers transfer from small quantum dots (SQDs) to large quantum dots (LQDs). Such interplay effects could be explained by carrier population of SQDs relative to LQDs, which could be fitted well using a thermal carrier rate equation model. On the other hand, for the low density sample, an abnormal broadening of full width at half maximum (FWHM) was observed at the 15-100 K interval. In addition, the FWHM also broadened with increasing injection power at the whole measured temperature interval. Such peculiarities of low density QDs could be attributed to the exciton dephasing processes, which is similar to the characteristic of a single quantum dot. The compared interplay effects of high-and low-density QDs reflect the difference between an interacting and isolated QDs system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cu-doped ZnO films with hexagonal wurtzite structure were deposited on silicon (1 1 1) substrates by radio frequency (RF) sputtering technique. An ultraviolet (UV) peak at similar to 380nm and a blue band centered at similar to 430nm were observed in the room temperature photoluminescent (PL) spectra. The UV emission peak was from the exciton transition. The blue emission band was assigned to the Zn interstitial (Zn-i) and Zn vacancy (V-Zn) level transition. A strong blue peak (similar to 435 nm) was observed in the PL spectra when the alpha(Cu) (the area ratio of Cu-chips to the Zn target) was 1.5% at 100 W, and ZnO films had c-axis preferred orientation and smaller lattice mismatch. The influence of alpha(Cu) and the sputtering power on the blue band was investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three new carbazole copolymers, poly(9-(2,5-diarene-[1,3,4]oxadiazole)-carbazole-alt-9-(2-ethylhexyl)-carbazole-3,6-diyl)s (P1), poly(9-(2,5-diarene-[1,3,4]oxadiazole)-2, 7-carbazole-alt-9-(2-ethylhexyl)-3, 6-carbazole-diyl)s (P2), and poly(9-(2,5-diarene-[1,3,4]oxadiazole)-carbazole-alt-9-(2-ethylhexyl)-carbazole-2,7-diyl)s (P3), were synthesized by the Suzuki coupling reaction

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By incorporating a new building block, 7,7,15,15-tetraoctyldinaphtho-s-indacene (NSI), into the backbone of poly(9,9-dioctylfluorene) (PFO), a novel series of blue light-emitting copolymers (PFO-NSI) have been developed. The insertion of the NSI unit into the PFO backbone leads to the increase of local effective conjugation length, to form low-energy fluorene-NSI-fluorene (FNF) segments that serve as exciton trapping sites, to which the energy transfers from the high-energy PFO segments. This causes these copolymers to show red-shifted emissions compared with PFO, with a high efficiency and good color stability and purity. The best device performance with a luminance efficiency of 3.43 cd . A(-1), a maximum brightness of 6 539 cd . m(-2) and CIE coordinates of (0.152, 0.164) was achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By incorporating two phosphorescent dyes, namely, iridium(III)[bis(4,6-difluorophenyl)-pyridinato-N,C-2']picolinate (Flrpic) for blue emission and bis(2-(9,9-diethyl-9H-fluoren-2-yl)-1-phenyl-1 H-benzoimidazol-N,C-3) iridium(acetylacetonate) ((fbi)(2)Ir(acac)) for orange emission, into a single-energy well-like emissive layer, an extremely high-efficiency white organic light-emitting diode (WOLED) with excellent color stability is demonstrated. This device can achieve a peak forward-viewing power efficiency of 42.5 lm W-1, corresponding to an external quantum efficiency (EQE) of 19.3% and a current efficiency of 52.8 cd A(-1). Systematic studies of the dopants, host and dopant-doped host films in terms of photophysical properties (including absorption, photoluminescence, and excitation spectra), transient photoluminescence, current density-voltage characteristics, and temperature-dependent electroluminescence spectra are subsequently performed, from which it is concluded that the emission natures of Flrpic and (fbi)(2)Ir(acac) are, respectively, host-guest energy transfer and a direct exciton formation process. These two parallel pathways serve to channel the overall excitons to both dopants, greatly reducing unfavorable energy losses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Layered organic-inorganic composite materials (C5H10N3)PbX4 (X = Br 1, Cl 2) containing histaminium dications were grown via a solution-cooling process, and their structure and optical properties were determined. The organic ligand-histaminium introduced into the corner-sharing octahedra of the 'PbX4- layer' contains both primary ammonium and imidazolium different from the traditionally primary amine found in this system. As comparison, another analogous amine of 3-amino-1,2,4-triazol was used as ligand to coordinate with PbBr2 in acid solution. A novel complex (C2H2N4)PbBr3 (3) was obtained with zigzag PbBr2 chains different from the PbX4 layer in compound as 1 and 2. The hybrid (C5H10N3)PbX4 show exciton absorption at 339 nm for X = Cl and 419 nm for X = Br with the corresponding emission at 360 and 436 nm, respectively. The different PbBr2 chain structure of compound 3 does not show photo luminescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By varying the substituent position of aminomethyl on pyridine ring in acid solution, different dimensional lead bromide frameworks ranging from zero-dimension and one-dimension to two-dimension were obtained. 2-(Aminomethyl)pyridine (2-AMP) or 3-(aminomethyl)pyridine (3-AMP) and PbBr2 construct hybrid perovskites, of which (H(2)2-AMP)PbBr4 (1) exhibits two-dimensional perovskite sheets with special hydrogen bonds and (H(2)3-AMP)PbBr6 (2) shows an uncommon zero-dimensional inorganic framework with isolated octahedra. The characteristic exciton peaks in absorption spectra are located at 431 nm for compound 1 and at 428 nm for compound 2. (H(2)4-AMP)PbBr4 (3) with one-dimensional zigzag edge-sharing octahedral PbBr(4)(2-)chains can be obtained using 4-(aminomethyl)pyridine (4-AMP) as organic component under the same experimental conditions as those for 2-AMP and 3-AMP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Efficient multilayer white polymer light-emitting diodes (WPLEDs) with aluminum cathodes are fabricated. The multilayer structure is composed of a water soluble hole-injection layer, a toluene-soluble emissive layer, and an alcohol-soluble emissive layer. The polarity difference of the solvents used for spin coating these polymers allows for realization of the multilayer polymer structure. The recombination zone confined at the interface of the two emissive polymers avoids exciton quenching by electrodes, and white emission is realized by harvesting photons emitted from the two emissive polymers. A maximum luminous efficiency of 16.9 cd/A and a power efficiency of 11.1 lm/W are achieved for this WPLED.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Light-emitting diodes exhibiting efficient pure-white-light electroluminescence have been successfully developed by using a single polymer: polyfluorene derivatives with 1,8-naphthalimide chromophores chemically doped onto the polyfluorene backbones. By adjusting the emission wavelength of the 1,8-naphthalimide components and optimizing the relative content of 1,8-naphthalimide derivatives in the resulting polymers, white-light electroluminescence from a single polymer, as opposed to a polymer blend, has been obtained in a device with a configuration of indium tin oxide/poly(3,4-ethyleiledioxythiophene)(50 nm)/polymer(80 nm)/Ca(10 nm)/Al(100 nm). The device exhibits Commission Internationale de I'Eclairage coordinates of (0.32,0.36), a maximum brightness of 11900 cd m(-2), a current efficiency of 3.8 cd A(-1), a power efficiency of 2.0 lm W-1. an external quantum efficiency of 1.50 %, and quite stable color coordinates at different driving voltages, even at high luminances of over 5000 cd m(-2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A multilayer white organic light-emitting diode (OLED) with high efficiency was present. The luminescent layer was composed of a red dye 4-(dicyanomethylene)-2-t-butyle-6-(1,1,7,7-tetra-methyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped into NN-bis-(1-naphthyl)-N,N-diphenyl-1,1-biphenyl-4-4-diamine (NPB) layer and a blue-emitting 9,10-bis-(beta-naphthyl)-anthrene (DNA) layer. Red and blue emission, respectively, from DCJTB:NPB and DNA can be obtained by effectively controlling the thicknesses of DCJTB:NPB and DNA layers, thus a stable white light emission was achieved. The device turned on at 3.5 V, and the maximum luminance reached 16000 cd/m(2) at 21 V. The maximum current efficiency and power efficiency were 13.6 cd/A and 5.5 lm/W, respectively.