985 resultados para Electricity Price Forecast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of renewables have been increased I several countries around the world, namely in Europe. The wind power is generally the larger renewable resource with very specific characteristics in what concerns its variability and the inherent impacts in the power systems and electricity markets operation. This paper focuses on the Portuguese context of renewables use, including wind power. The work here presented includes the use of a real time pricing methodology developed by the authors aiming the reduction of electricity consumption in the moments of unexpected low wind power. A more specific example of application of real time pricing is demonstrated for the minimization of the operation costs in a distribution network. When facing lower wind power generation than expected from day ahead forecast, demand response is used in order to minimize the impacts of such wind availability change. In this way, consumers actively participate in regulation up and spinning reserve ancillary services through demand response programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an electricity medium voltage (MV) customer characterization framework supportedby knowledge discovery in database (KDD). The main idea is to identify typical load profiles (TLP) of MVconsumers and to develop a rule set for the automatic classification of new consumers. To achieve ourgoal a methodology is proposed consisting of several steps: data pre-processing; application of severalclustering algorithms to segment the daily load profiles; selection of the best partition, corresponding tothe best consumers’ segmentation, based on the assessments of several clustering validity indices; andfinally, a classification model is built based on the resulting clusters. To validate the proposed framework,a case study which includes a real database of MV consumers is performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electric utilities have large revenue losses annually due to commercial losses, which are caused mainly by fraud on the part of consumers and faulty meters. Automatic detection of such losses where there is a complex problem, given the large number of consumers and the high cost of each inspection, not to mention the wear of the relationship between company and consumer. Given the above, this paper aims to briefly present some methodologies applied by utilities to identify consumer frauds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Worldwide electricity markets have been evolving into regional and even continental scales. The aim at an efficient use of renewable based generation in places where it exceeds the local needs is one of the main reasons. A reference case of this evolution is the European Electricity Market, where countries are connected, and several regional markets were created, each one grouping several countries, and supporting transactions of huge amounts of electrical energy. The continuous transformations electricity markets have been experiencing over the years create the need to use simulation platforms to support operators, regulators, and involved players for understanding and dealing with this complex environment. This paper focuses on demonstrating the advantage that real electricity markets data has for the creation of realistic simulation scenarios, which allow the study of the impacts and implications that electricity markets transformations will bring to the participant countries. A case study using MASCEM (Multi-Agent System for Competitive Electricity Markets) is presented, with a scenario based on real data, simulating the European Electricity Market environment, and comparing its performance when using several different market mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy resource scheduling is becoming increasingly important, such as the use of more distributed generators and electric vehicles connected to the distribution network. This paper proposes a methodology to be used by Virtual Power Players (VPPs), regarding the energy resource scheduling in smart grids and considering day-ahead, hour-ahead and realtime time horizons. This method considers that energy resources are managed by a VPP which establishes contracts with their owners. The full AC power flow calculation included in the model takes into account network constraints. In this paper, distribution function errors are used to simulate variations between time horizons, and to measure the performance of the proposed methodology. A 33-bus distribution network with large number of distributed resources is used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamism and ongoing changes that the electricity markets sector is constantly suffering, enhanced by the huge increase in competitiveness, create the need of using simulation platforms to support operators, regulators, and the involved players in understanding and dealing with this complex environment. This paper presents an enhanced electricity market simulator, based on multi-agent technology, which provides an advanced simulation framework for the study of real electricity markets operation, and the interactions between the involved players. MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) uses real data for the creation of realistic simulation scenarios, which allow the study of the impacts and implications that electricity markets transformations bring to different countries. Also, the development of an upper-ontology to support the communication between participating agents, provides the means for the integration of this simulator with other frameworks, such as MAN-REM (Multi-Agent Negotiation and Risk Management in Electricity Markets). A case study using the enhanced simulation platform that results from the integration of several systems and different tools is presented, with a scenario based on real data, simulating the MIBEL electricity market environment, and comparing the simulation performance with the real electricity market results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the Realistic Scenarios Generator (RealScen), a tool that processes data from real electricity markets to generate realistic scenarios that enable the modeling of electricity market players’ characteristics and strategic behavior. The proposed tool provides significant advantages to the decision making process in an electricity market environment, especially when coupled with a multi-agent electricity markets simulator. The generation of realistic scenarios is performed using mechanisms for intelligent data analysis, which are based on artificial intelligence and data mining algorithms. These techniques allow the study of realistic scenarios, adapted to the existing markets, and improve the representation of market entities as software agents, enabling a detailed modeling of their profiles and strategies. This work contributes significantly to the understanding of the interactions between the entities acting in electricity markets by increasing the capability and realism of market simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All over the world, the liberalization of electricity markets, which follows different paradigms, has created new challenges for those involved in this sector. In order to respond to these challenges, electric power systems suffered a significant restructuring in its mode of operation and planning. This restructuring resulted in a considerable increase of the electric sector competitiveness. Particularly, the Ancillary Services (AS) market has been target of constant renovations in its operation mode as it is a targeted market for the trading of services, which have as main objective to ensure the operation of electric power systems with appropriate levels of stability, safety, quality, equity and competitiveness. In this way, with the increasing penetration of distributed energy resources including distributed generation, demand response, storage units and electric vehicles, it is essential to develop new smarter and hierarchical methods of operation of electric power systems. As these resources are mostly connected to the distribution network, it is important to consider the introduction of this kind of resources in AS delivery in order to achieve greater reliability and cost efficiency of electrical power systems operation. The main contribution of this work is the design and development of mechanisms and methodologies of AS market and for energy and AS joint market, considering different management entities of transmission and distribution networks. Several models developed in this work consider the most common AS in the liberalized market environment: Regulation Down; Regulation Up; Spinning Reserve and Non-Spinning Reserve. The presented models consider different rules and ways of operation, such as the division of market by network areas, which allows the congestion management of interconnections between areas; or the ancillary service cascading process, which allows the replacement of AS of superior quality by lower quality of AS, ensuring a better economic performance of the market. A major contribution of this work is the development an innovative methodology of market clearing process to be used in the energy and AS joint market, able to ensure viable and feasible solutions in markets, where there are technical constraints in the transmission network involving its division into areas or regions. The proposed method is based on the determination of Bialek topological factors and considers the contribution of the dispatch for all services of increase of generation (energy, Regulation Up, Spinning and Non-Spinning reserves) in network congestion. The use of Bialek factors in each iteration of the proposed methodology allows limiting the bids in the market while ensuring that the solution is feasible in any context of system operation. Another important contribution of this work is the model of the contribution of distributed energy resources in the ancillary services. In this way, a Virtual Power Player (VPP) is considered in order to aggregate, manage and interact with distributed energy resources. The VPP manages all the agents aggregated, being able to supply AS to the system operator, with the main purpose of participation in electricity market. In order to ensure their participation in the AS, the VPP should have a set of contracts with the agents that include a set of diversified and adapted rules to each kind of distributed resource. All methodologies developed and implemented in this work have been integrated into the MASCEM simulator, which is a simulator based on a multi-agent system that allows to study complex operation of electricity markets. In this way, the developed methodologies allow the simulator to cover more operation contexts of the present and future of the electricity market. In this way, this dissertation offers a huge contribution to the AS market simulation, based on models and mechanisms currently used in several real markets, as well as the introduction of innovative methodologies of market clearing process on the energy and AS joint market. This dissertation presents five case studies; each one consists of multiple scenarios. The first case study illustrates the application of AS market simulation considering several bids of market players. The energy and ancillary services joint market simulation is exposed in the second case study. In the third case study it is developed a comparison between the simulation of the joint market methodology, in which the player bids to the ancillary services is considered by network areas and a reference methodology. The fourth case study presents the simulation of joint market methodology based on Bialek topological distribution factors applied to transmission network with 7 buses managed by a TSO. The last case study presents a joint market model simulation which considers the aggregation of small players to a VPP, as well as complex contracts related to these entities. The case study comprises a distribution network with 33 buses managed by VPP, which comprises several kinds of distributed resources, such as photovoltaic, CHP, fuel cells, wind turbines, biomass, small hydro, municipal solid waste, demand response, and storage units.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A presente dissertação apresenta o estudo de previsão do diagrama de carga de subestações da Rede Elétrica Nacional (REN) utilizando redes neuronais, com o intuito de verificar a viabilidade do método utilizado, em estudos futuros. Atualmente, a energia elétrica é um bem essencial e desempenha um papel fundamental, tanto a nível económico do país, como a nível de conforto e satisfação individual. Com o desenvolvimento do setor elétrico e o aumento dos produtores torna-se importante a realização da previsão de diagramas de carga, contribuindo para a eficiência das empresas. Esta dissertação tem como objetivo a utilização do modelo das redes neuronais artificiais (RNA) para criar uma rede capaz de realizar a previsão de diagramas de carga, com a finalidade de oferecer a possibilidade de redução de custos e gastos, e a melhoria de qualidade e fiabilidade. Ao longo do trabalho são utilizados dados da carga (em MW), obtidos da REN, da subestação da Prelada e dados como a temperatura, humidade, vento e luminosidade, entre outros. Os dados foram devidamente tratados com a ajuda do software Excel. Com o software MATLAB são realizados treinos com redes neuronais, através da ferramenta Neural Network Fitting Tool, com o objetivo de obter uma rede que forneça os melhores resultados e posteriormente utiliza-la na previsão de novos dados. No processo de previsão, utilizando dados reais das subestações da Prelada e Ermesinde referentes a Março de 2015, comprova-se que com a utilização de RNA é possível obter dados de previsão credíveis, apesar de não ser uma previsão exata. Deste modo, no que diz respeito à previsão de diagramas de carga, as RNA são um bom método a utilizar, uma vez que fornecem, à parte interessada, uma boa previsão do consumo e comportamento das cargas elétricas. Com a finalização deste estudo os resultados obtidos são no mínimo satisfatórios. Consegue-se alcançar através das RNA resultados próximos aos valores que eram esperados, embora não exatamente iguais devido à existência de uma margem de erro na aprendizagem da rede neuronal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a price competition in a duopoly with substitutable goods, linear and symmetric demand. There is a firm (F 1) that chooses first the price p 1 of its good; the other firm (F 2) observes p 1 and then chooses the price p 2 of its good. The conclusions of this price-setting dynamical duopoly are substantially altered by the presence of either differentiated goods or asymmetric information about rival’s production costs. In this paper, we consider asymmetric information about rival’s production costs. We do ex-ante and ex-post analyses of firms’ profits and market prices. We compare the ex-ante firms’ expected profits with the ex-post firms’ profits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contextualization is critical in every decision making process. Adequate responses to problems depend not only on the variables with direct influence on the outcomes, but also on a correct contextualization of the problem regarding the surrounding environment. Electricity markets are dynamic environments with increasing complexity, potentiated by the last decades' restructuring process. Dealing with the growing complexity and competitiveness in this sector brought the need for using decision support tools. A solid example is MASCEM (Multi-Agent Simulator of Competitive Electricity Markets), whose players' decisions are supported by another multiagent system – ALBidS (Adaptive Learning strategic Bidding System). ALBidS uses artificial intelligence techniques to endow market players with adaptive learning capabilities that allow them to achieve the best possible results in market negotiations. This paper studies the influence of context awareness in the decision making process of agents acting in electricity markets. A context analysis mechanism is proposed, considering important characteristics of each negotiation period, so that negotiating agents can adapt their acting strategies to different contexts. The main conclusion is that context-dependant responses improve the decision making process. Suiting actions to different contexts allows adapting the behaviour of negotiating entities to different circumstances, resulting in profitable outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electricity market restructuring, and its worldwide evolution into regional and even continental scales, along with the increasing necessity for an adequate integration of renewable energy sources, is resulting in a rising complexity in power systems operation. Several power system simulators have been developed in recent years with the purpose of helping operators, regulators, and involved players to understand and deal with this complex and constantly changing environment. The main contribution of this paper is given by the integration of several electricity market and power system models, respecting to the reality of different countries. This integration is done through the development of an upper ontology which integrates the essential concepts necessary to interpret all the available information. The continuous development of Multi-Agent System for Competitive Electricity Markets platform provides the means for the exemplification of the usefulness of this ontology. A case study using the proposed multi-agent platform is presented, considering a scenario based on real data that simulates the European Electricity Market environment, and comparing its performance using different market mechanisms. The main goal is to demonstrate the advantages that the integration of various market models and simulation platforms have for the study of the electricity markets’ evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy sector has suffered a significant restructuring that has increased the complexity in electricity market players' interactions. The complexity that these changes brought requires the creation of decision support tools to facilitate the study and understanding of these markets. The Multiagent Simulator of Competitive Electricity Markets (MASCEM) arose in this context, providing a simulation framework for deregulated electricity markets. The Adaptive Learning strategic Bidding System (ALBidS) is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM, ALBidS considers several different strategic methodologies based on highly distinct approaches. Six Thinking Hats (STH) is a powerful technique used to look at decisions from different perspectives, forcing the thinker to move outside its usual way of thinking. This paper aims to complement the ALBidS strategies by combining them and taking advantage of their different perspectives through the use of the STH group decision technique. The combination of ALBidS' strategies is performed through the application of a genetic algorithm, resulting in an evolutionary learning approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a dynamic setting-price duopoly model in which a dominant (leader) firm moves first and a subordinate (follower) firm moves second. We suppose that each firm has two different technologies, and uses one of them according to a certain probability distribution. The use of either one or the other technology affects the unitary production cost. We analyse the effect of the production costs uncertainty on the profits of the firms, for different values of the intercept demand parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nos últimos anos o consumo de energia elétrica produzida a partir de fontes renováveis tem aumentado significativamente. Este aumento deve-se ao impacto ambiental que recursos como o petróleo, gás, urânio, carvão, entre outros, têm no meio ambiente e que são notáveis no diaa- dia com as alterações climáticas e o aquecimento global. Por sua vez, estes recursos têm um ciclo de vida limitado e a dada altura tornar-se-ão escassos. A preocupação de uma melhoria contínua na redução dos impactos ambientais levou à criação de Normas para uma gestão mais eficiente e sustentável do consumo de energia nos edifícios. Parte da eletricidade vendida pelas empresas de comercialização é produzida através de fontes renováveis, e com a recente publicação do Decreto de Lei nº 153/2014 de 20 outubro de 2014 que regulamenta o autoconsumo, permitindo que também os consumidores possam produzir a sua própria energia nas suas residências para reduzir os custos com a compra de eletricidade. Neste contexto surgiram os edifícios inteligentes. Por edifícios inteligentes entende-se que são edifícios construídos com materiais que os tornam mais eficientes, possuem iluminação e equipamentos elétricos mais eficientes, e têm sistemas de produção de energia que permitem alimentar o próprio edifício, para um consumo mais sustentado. Os sistemas implementados nos edifícios inteligentes visam a monitorização e gestão da energia consumida e produzida para evitar desperdícios de consumo. O trabalho desenvolvido visa o estudo e a implementação de Redes Neuronais Artificiais (RNA) para prever os consumos de energia elétrica dos edifícios N e I do ISEP/GECAD, bem como a previsão da produção dos seus painéis fotovoltáicos. O estudo feito aos dados de consumo permitiu identificar perfis típicos de consumo ao longo de uma semana e de que forma são influenciados pelo contexto, nomeadamente, com os dias da semana versus fim-de-semana, e com as estações do ano, sendo analisados perfis de consumo de inverno e verão. A produção de energia através de painéis fotovoltaicos foi também analisada para perceber se a produção atual é suficiente para satisfazer as necessidades de consumo dos edifícios. Também foi analisada a possibilidade da produção satisfazer parcialmente as necessidades de consumos específicos, por exemplo, da iluminação dos edifícios, dos seus sistemas de ar condicionado ou dos equipamentos usados.