973 resultados para Electric circuit analysis.
Resumo:
Conductivity behavior of the Bi12TiO20 single crystal was investigated by the electric modulus spectroscopy, which was carried out in the frequency range from 5 Hz to 13 MHz and at temperatures higher than 400 degrees C. The resistance curve exhibits a set of properties correlated to a negative temperature coefficient thermistor. In the temperature range investigated, the characteristic parameter (,8) of the thermistor is equal to 4834 degrees C. Temperature coefficients of the resistance (a) were derived being equal to -3.02 x 10(-2) degrees C-1 at 400 degrees C and equal to -9.86 x 10(-3) degrees C-1 at 700 degrees C. The nature of the electric relaxation phenomenon and magnitude dc conductivity are approached. (c) 2005 American Institute of Physics.
Resumo:
This article presents a thermoeconomic analysis of cogeneration plants, applied as a rational technique to produce electric power and saturated steam. The aim of this new methodology is the minimum Exergetic Production Cost (EPC), based on the Second Law of Thermodynamics. The variables selected for the optimization are the pressure and the temperature of the steam leaving the boiler in the case of using steam turbine, and the pressure ratio, turbine exhaust temperature and mass flow in the case of using gas turbines. The equations for calculating the capital costs of the components and products are formulated as a function of these decision variables. An application of the method using real data of a multinational chemical industry located in São Paulo state is presented. The conditions which establish the minimum cost are presented as final output. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
It has been used a new image analysis method, based on segmentation by shape parameters, for pits morphology examination from Al 2024 aluminum-copper alloy in chloride aqueous solution. Corrosion behavior of this alloys in naturally aerated 3.5% NaCl solution has been investigated through open circuit potential measurements. Afterwards, pits have been characterized by image analysis taking density and size measurements right from corroded surfaces. Morphological investigation has been conducted for profiles, cut orthogonally from mean surface planes, and observed through light microscopy. Image analysis data could demonstrate that pits are wider than deep, evoluting for conical, quasi-conical or irregular shapes. Most pits have presented a quasi-conical morphology, but the wider ones have evoluted to an irregular shape influenced by sub-surface microstructure. Image analysis based on shape segmentation could enhance the differences on morphological behavior. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We used a Stark-Optoacoustic cell and hybrid waveguide resonators to perform an Infrared and Far Infrared Stark Spectroscopy study on some transitions of (CD3OH)-C-13. Different behaviours of the transitions in the presence of a d.c. electric field were observed. The Stark splittings of six FIR laser lines ranging from 34 to 136 MHz/kVcm(-1) were determined. The analysis of the behaviour of the IR and FIR transitions in the presence of the external electric fields gives important and exclusive information on the levels involved in the transitions.
Resumo:
High non-linear J x E electrical characteristic (alpha=41) were obtained in the Nb2O5 and Cr2O3 doped CoO highly densified SnO2 ceramics. X-ray diffraction analysis showed that these ceramics are apparently single phase. Electrical properties and microstructure are highly dependent on the Cr2O3 concentration and on the sintering temperature. Excess of Cr2O3 leads to porous ceramics destroying the material's electrical characteristics probably due to precipitation of second phase of CoCr2O4 Dopant segregation and/or solid solution formation at the grain boundaries can be responsible for the formation of the electrical barriers which originate the varistor behaviour. (C) 1998 Elsevier B.V. Limited and Techna S.r.l. All rights reserved.
Resumo:
Drying kinetics of tomato was studied by using heat pump dryer (HPD) and electric resistance dryers with parallel and crossed airflow. The performance of both systems was evaluated and compared and the influence of temperature, air velocity, and tomato type on the drying kinetics was analyzed. The use of HPD showed to be adequate in the drying process of tomatoes, mainly in relation to the conversion rate of electric energy into thermal energy. The heat pump effective coefficient of performance (COPHT,EF) was between 2.56 and 2.68, with an energy economy of about 40% when compared to the drying system with electric resistance. The Page model could be used to predict drying time of tomato and statistical analysis showed that the model parameters were mainly affected by drying temperature.
Resumo:
The electric and dielectric properties of the grain boundary of Na0.85Li0.15NbO3 lead-free ferroelectric-semiconductor perovskite were investigated. The impedance spectroscopy was carried out as a function of a thermal cycle. The sodium lithium niobate was synthesized by a chemical route based on the evaporation method. Dense ceramic, relative density of 97%, was prepared at 1423 K for 2 h in air atmosphere. ac measurements were carried out in the frequency range of 5 Hz-13 MHz and from 673 to 1023 K. Theoretical adjust of the impedance data was performed to deriving the electric parameters of the grain boundary. The electric conductivity follows the Arrhenius law, with activation energy values equal to 1.55 and 1.54 eV for heating and cooling cycle, respectively. The nonferroelectric state of the grain boundary and its correlation with symmetry are discussed in the temperature domain. (C) 2003 American Institute of Physics.
Resumo:
An application of the linear machine one-dimensional analysis method to the modeling of a conventional asynchronous induction motor, considered as a particular case of linear and sectorial machines, is described. A mathematical model for the calculation of the propulsive force developed by this motor, taking into account the transversal edge effect, is derived from the application of the one-dimensional theory and presented in this paper. As an application example, an induction motor is analyzed by means of the one-dimensional theory.
Resumo:
Three-Phase Induction Motors (TIM) and Arc Welding Machines (AWM) are loads of special behavior widely used in industrial and commercial installations, and therefore may contribute significantly to the deterioration of the quality of energy supplied by utilities. This paper proposes a modeling in constant power of the unbalanced TIM starting using Genetic Algorithm (GA) and AWM short-circuit based on their statics characteristics curves. The proposed models are compared with the conventional models in the literature. The results showed the good performance of the proposed models, allowing a more precise analysis of the real requests of these loads.
Resumo:
This paper presents an analysis and discussion, based on cooperative game theory, for the allocation of the cost of losses to generators and demands in transmission systems. We construct a cooperative game theory model in which the players are represented by equivalent bilateral exchanges and we search for a unique loss allocation solution, the Core. Other solution concepts, such as the Shapley Value, the Bilateral Shapley Value and the Kernel are also explored. Our main objective is to illustrate why is not possible to find an optimal solution for allocating the cost of losses to the users of a network. Results and relevant conclusions are presented for a 4-bus system and a 14-bus system. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The distribution of short-circuit current is investigated by means of two methods, one direct and the other analytic; both methods consider uniform probability distribution of line faults. In the direct method, the procedure consists of calculating fault currents at equidistant points along the line, starting from one of the end points and considering the other end open. The magnitude of the current is classified according to Brazilian standards (regulation NBR-7118). The analytic method assumes that the distribution of short-circuit currents through the busbar and the distribution of the line length connected to it are known, as well as the independence of values. The method is designed to determine the probability that fault currents through a line will surpass the pre-established magnitude, thus generating frequency distribution curves of short-circuit currents along the lines.
Resumo:
This paper enhances some concepts of the Instantaneous Complex Power Theory by analyzing the analytical expressions for voltages, currents and powers developed on a symmetrical RL three-phase system, during the transient caused by a sinusoidal voltage excitation. The powers delivered to an ideal inductor will be interpreted, allowing a deep insight in the power phenomenon by analyzing the voltages in each element of the circuit. The results can be applied to the understanding of non-linear systems subject to sinusoidal voltage excitation and distorted currents.
Resumo:
Although conventional rotating machines have been largely used to drive underground transportation systems, linear induction motors are also being considered for future applications owing to their indisputable advantages. A mathematical model for the transient behavior analysis of linear induction motors, when operating with constant r.m.s. currents, is presented in this paper. Operating conditions, like phase short-circuit and input frequency variations and also some design characteristics, such as air-gap and secondary resistivity variations, can be considered by means of this modeling. The basis of the mathematical modeling is presented. Experimental results obtained in the laboratory are compared with the corresponding simulations and discussed in this paper.
Resumo:
A linearly-tunable ULV transconductor featuring excellent stability of the processed signal common-mode voltage upon tuning, critical for very-low voltage applications, is presented. Its employment to the synthesis of CMOS gm-C high-frequency and voiceband filters is discussed. SPICE data describe the filter characteristics. For a 1.3 V-supply, their nominal passband frequencies are 1.0 MHz and 3.78 KHz, respectively, with tuning rates of 12.52 KHz/mV and 0.16 KHz/m V, input-referred noise spectral density of 1.3 μV/Hz1/2 and 5.0μV/Hz1/2 and standby consumption of 0.87 mW and 11.8 μW. Large-signal distortion given by THD = 1% corresponds to a differential output-swing of 360 mVpp and 480 mVpp, respectively. Common-mode voltage deviation is less than 4 mV over tuning interval.