847 resultados para Ecosystem Functioning


Relevância:

20.00% 20.00%

Publicador:

Resumo:

El presente estudio tiene como objetivo proporcionar una base de conocimiento sólida para la restauración ecológica de ríos, basada en la respuesta de comunidades acuáticas a cambios en la conectividad hídrica, factores medioambientales y presión antrópica. La conectividad hídrica lateral resultó ser el factor principal que estructura hábitats y comunidades acuáticas en el Ebro; mientras que la turbidez, salinidad y concentración de nutrientes fueron factores secundarios. La combinación de estos factores establece un marco ecológico que permite realizar predicciones acerca de los patrones taxonómicos y funcionales con más probabilidades de ocurrir en la llanura del Ebro. La posibilidad de que se creen nuevos humedales de forma natural en el Ebro es muy baja, mientras los que quedan están amenazados por una baja renovación del agua. El objetivo de la restauración ecológica debe por tanto consistir en re-establecer un amplio rango de condiciones hídricas, de acuerdo con el potencial sostenible del ecosistema.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alpha-synuclein is found in synaptic terminals at the base of both inner and outer hair cells, while the beta isoform is prominently localized to spiral ganglion neuron cell bodies. The present study assessed the role of beta-synuclein in auditory function, and potential interactions between isoforms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this literature review was to determine the social functioning of oral deaf adolescents in the mainstream educational setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ramsar site of Lake Uluabat, western Turkey, suffers from eutrophication, urban and industrial pollution and water abstraction, and its water levels are managed artificially. Here we combine monitoring and palaeolimnological. techniques to investigate spatial and temporal limnological variability and ecosystem impact, using an ostracod and mollusc survey to strengthen interpretation of the fossil record. A combination of low invertebrate Biological Monitoring Working Party scores (<10) and the dominance of eutrophic diatoms in the modern lake confirms its poor ecological status. Palaeolimnological analysis of recent (last >200 yr) changes in organic and carbonate content, diatoms, stable isotopes, ostracods and molluscs in a lake sediment core (UL20A) indicates a 20th century trend towards increased sediment accumulation rates and eutrophication which was probably initiated by deforestation and agriculture. The most marked ecological shift occurs in the early 1960s, however. A subtle rise in diatom-inferred total phosphorus and an inferred reduction in submerged aquatic macrophyte cover accompanies a major increase in sediment accumulation rate. An associated marked shift in ostracod stable isotope data indicative of reduced seasonality and a change in hydrological input suggests major impact from artificial water management practices, all of which appears to have culminated in the sustained loss of submerged macrophytes since 2000. The study indicates it is vital to take both land-use and water management practices into account in devising restoration strategies. in a wider context, the results have important implications for the conservation of shallow karstic lakes, the functioning of which is still poorly understood. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change science is increasingly concerned with methods for managing and integrating sources of uncertainty from emission storylines, climate model projections, and ecosystem model parameterizations. In tropical ecosystems, regional climate projections and modeled ecosystem responses vary greatly, leading to a significant source of uncertainty in global biogeochemical accounting and possible future climate feedbacks. Here, we combine an ensemble of IPCC-AR4 climate change projections for the Amazon Basin (eight general circulation models) with alternative ecosystem parameter sets for the dynamic global vegetation model, LPJmL. We evaluate LPJmL simulations of carbon stocks and fluxes against flux tower and aboveground biomass datasets for individual sites and the entire basin. Variability in LPJmL model sensitivity to future climate change is primarily related to light and water limitations through biochemical and water-balance-related parameters. Temperature-dependent parameters related to plant respiration and photosynthesis appear to be less important than vegetation dynamics (and their parameters) for determining the magnitude of ecosystem response to climate change. Variance partitioning approaches reveal that relationships between uncertainty from ecosystem dynamics and climate projections are dependent on geographic location and the targeted ecosystem process. Parameter uncertainty from the LPJmL model does not affect the trajectory of ecosystem response for a given climate change scenario and the primary source of uncertainty for Amazon 'dieback' results from the uncertainty among climate projections. Our approach for describing uncertainty is applicable for informing and prioritizing policy options related to mitigation and adaptation where long-term investments are required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Managing ecosystems to ensure the provision of multiple ecosystem services is a key challenge for applied ecology. Functional traits are receiving increasing attention as the main ecological attributes by which different organisms and biological communities influence ecosystem services through their effects on underlying ecosystem processes. Here we synthesize concepts and empirical evidence on linkages between functional traits and ecosystem services across different trophic levels. Most of the 247 studies reviewed considered plants and soil invertebrates, but quantitative trait–service associations have been documented for a range of organisms and ecosystems, illustrating the wide applicability of the trait approach. Within each trophic level, specific processes are affected by a combination of traits while particular key traits are simultaneously involved in the control of multiple processes. These multiple associations between traits and ecosystem processes can help to identify predictable trait–service clusters that depend on several trophic levels, such as clusters of traits of plants and soil organisms that underlie nutrient cycling, herbivory, and fodder and fibre production. We propose that the assessment of trait–service clusters will represent a crucial step in ecosystem service monitoring and in balancing the delivery of multiple, and sometimes conflicting, services in ecosystem management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The MarQUEST (Marine Biogeochemistry and Ecosystem Modelling Initiative in QUEST) project was established to develop improved descriptions of marine biogeochemistry, suited for the next generation of Earth system models. We review progress in these areas providing insight on the advances that have been made as well as identifying remaining key outstanding gaps for the development of the marine component of next generation Earth system models. The following issues are discussed and where appropriate results are presented; the choice of model structure, scaling processes from physiology to functional types, the ecosystem model sensitivity to changes in the physical environment, the role of the coastal ocean and new methods for the evaluation and comparison of ecosystem and biogeochemistry models. We make recommendations as to where future investment in marine ecosystem modelling should be focused, highlighting a generic software framework for model development, improved hydrodynamic models, and better parameterisation of new and existing models, reanalysis tools and ensemble simulations. The final challenge is to ensure that experimental/observational scientists are stakeholders in the models and vice versa.