764 resultados para ERP BPR EnterpriseMobility BPMN ChangeManagement
Resumo:
Inhibitory control deficits are well documented in schizophrenia, supported by impairment in an established measure of response inhibition, the stop-signal reaction time (SSRT). We investigated the neural basis of this impairment by comparing schizophrenia patients and controls matched for age, sex and education on behavioural, functional magnetic resonance imaging (fMRI) and event-related potential (ERP) indices of stop-signal task performance. Compared to controls, patients exhibited slower SSRT and reduced right inferior frontal gyrus (rIFG) activation, but rIFG activation correlated with SSRT in both groups. Go stimulus and stop-signal ERP components (N1/P3) were smaller in patients, but the peak latencies of stop-signal N1 and P3 were also delayed in patients, indicating impairment early in stop-signal processing. Additionally, response-locked lateralised readiness potentials indicated response preparation was prolonged in patients. An inability to engage rIFG may predicate slowed inhibition in patients, however multiple spatiotemporal irregularities in the networks underpinning stop-signal task performance may contribute to this deficit.
Resumo:
We examine IT-enabled Business Transformations (ITBT) based on three case studies of successful, multi-year ERP implementation programs. Given the inconsistencies in segmenting the different key periods in ITBTs in both literature and our cases, we sought to consolidate the common events or critical incidents in such initiatives. We label those key periods as waves, and the emergence of triggers and reactions thereunto in the management of business transformations. We show that business transformations unfold in four distinct waves: Wave 1 Concept Development, Wave 2 Blueprint Design, Wave 3 Solution Delivery and Wave 4 Post-Transformation. These waves are characterized by the occurrence of strategic- and program-level triggers to which organizations respond by invoking different management services. Our interpretive research provides a new conceptualization of ITBTs based on a service-oriented view of such initiatives. This view draws attention to managerial capabilities as a service to transformations, and how and when these capabilities are required to respond to triggering incidents. We outline propositions and recommendations for business transformation management.
Resumo:
There were signs in the 1997 High Court decision in Hill v Van Erp that the different members of the bench were beginning to move in the same direction when it came to the tort equivalent of the search for the Holy Grail, a common approach to the determination of the existence of a duty of care in negligence. However, the court's subsequent decision in Perre v Apand signaled a slide back to uncertainty with the seven judges favouring five different approaches. This Note examines those five approaches in the search for guidance for those at the "coalface" - litigants, their legal advisers and trial judges.
Resumo:
In-memory databases have become a mainstay of enterprise computing offering significant performance and scalability boosts for online analytical and (to a lesser extent) transactional processing as well as improved prospects for integration across different applications through an efficient shared database layer. Significant research and development has been undertaken over several years concerning data management considerations of in-memory databases. However, limited insights are available on the impacts of applications and their supportive middleware platforms and how they need to evolve to fully function through, and leverage, in-memory database capabilities. This paper provides a first, comprehensive exposition into how in-memory databases impact Business Pro- cess Management, as a mission-critical and exemplary model-driven integration and orchestration middleware. Through it, we argue that in-memory databases will render some prevalent uses of legacy BPM middleware obsolete, but also open up exciting possibilities for tighter application integration, better process automation performance and some entirely new BPM capabilities such as process-based application customization. To validate the feasibility of an in-memory BPM, we develop a surprisingly simple BPM runtime embedded into SAP HANA and providing for BPMN-based process automation capabilities.
Resumo:
This paper presents a layered framework for the purposes of integrating different Socio-Technical Systems (STS) models and perspectives into a whole-of-systems model. Holistic modelling plays a critical role in the engineering of STS due to the interplay between social and technical elements within these systems and resulting emergent behaviour. The framework decomposes STS models into components, where each component is either a static object, dynamic object or behavioural object. Based on existing literature, a classification of the different elements that make up STS, whether it be a social, technical or a natural environment element, is developed; each object can in turn be classified according to the STS elements it represents. Using the proposed framework, it is possible to systematically decompose models to an extent such that points of interface can be identified and the contextual factors required in transforming the component of one model to interface into another is obtained. Using an airport inbound passenger facilitation process as a case study socio-technical system, three different models are analysed: a Business Process Modelling Notation (BPMN) model, Hybrid Queue-based Bayesian Network (HQBN) model and an Agent Based Model (ABM). It is found that the framework enables the modeller to identify non-trivial interface points such as between the spatial interactions of an ABM and the causal reasoning of a HQBN, and between the process activity representation of a BPMN and simulated behavioural performance in a HQBN. Such a framework is a necessary enabler in order to integrate different modelling approaches in understanding and managing STS.
Resumo:
Empirical evidence suggests impaired facial emotion recognition in schizophrenia. However, the nature of this deficit is the subject of ongoing research. The current study tested the hypothesis that a generalized deficit at an early stage of face-specific processing (i.e. putatively subserved by the fusiform gyrus) accounts for impaired facial emotion recognition in schizophrenia as opposed to the Negative Emotion-specific Deficit Model, which suggests impaired facial information processing at subsequent stages. Event-related potentials (ERPs) were recorded from 11 schizophrenia patients and 15 matched controls while performing a gender discrimination and a facial emotion recognition task. Significant reduction of the face-specific vertex positive potential (VPP) at a peak latency of 165 ms was confirmed in schizophrenia subjects whereas their early visual processing, as indexed by P1, was found to be intact. Attenuated VPP was found to correlate with subsequent P3 amplitude reduction and to predict accuracy when performing a facial emotion discrimination task. A subset of ten schizophrenia patients and ten matched healthy control subjects also performed similar tasks in the magnetic resonance imaging scanner. Patients showed reduced blood oxygenation level-dependent (BOLD) activation in the fusiform, inferior frontal, middle temporal and middle occipital gyrus as well as in the amygdala. Correlation analyses revealed that VPP and the subsequent P3a ERP components predict fusiform gyrus BOLD activation. These results suggest that problems in facial affect recognition in schizophrenia may represent flow-on effects of a generalized deficit in early visual processing.
Resumo:
With the increasing competitiveness in global markets, many developing nations are striving to constantly improve their services in search for the next competitive edge. As a result, the demand and need for Business Process Management (BPM) in these regions is seeing a rapid rise. Yet there exists a lack of professional expertise and knowledge to cater to that need. Therefore, the development of well-structured BPM training/ education programs has become an urgent requirement for these industries. Furthermore, the lack of textbooks or other self-educating material, that go beyond the basics of BPM, further ratifies the need for case based teaching and related cases that enable the next generation of professionals in these countries. Teaching cases create an authentic learning environment where complexities and challenges of the ‘real world’ can be presented in a narrative, enabling students to evolve crucial skills such as problem analysis, problem solving, creativity within constraints as well as the application of appropriate tools (BPMN) and techniques (including best practices and benchmarking) within richer and real scenarios. The aim of this paper is to provide a comprehensive teaching case demonstrating the means to tackle any developing nation’s legacy government process undermined by inefficiency and ineffectiveness. The paper also includes thorough teaching notes The article is presented in three main parts: (i) Introduction - that provides a brief background setting the context of this paper, (ii) The Teaching Case, and (iii) Teaching notes.
Resumo:
This study proposes that technology adoption be considered as a multi-stage process constituting several distinct stages. Using the Theory of Planned Behaviour (TPB), Ettlie’s adoption stages and by employing data gathered from 162 owners of Small and Medium-sized Enterprises (SMEs), our findings show that the determinants of the intention to adopt packaged software fluctuate significantly across adoption stages.
Resumo:
The pattern of structural brain alterations associated with major depressive disorder (MDD) remains unresolved. This is in part due to small sample sizes of neuroimaging studies resulting in limited statistical power, disease heterogeneity and the complex interactions between clinical characteristics and brain morphology. To address this, we meta-analyzed three-dimensional brain magnetic resonance imaging data from 1728 MDD patients and 7199 controls from 15 research samples worldwide, to identify subcortical brain volumes that robustly discriminate MDD patients from healthy controls. Relative to controls, patients had significantly lower hippocampal volumes (Cohen’s d=−0.14, % difference=−1.24). This effect was driven by patients with recurrent MDD (Cohen’s d=−0.17, % difference=−1.44), and we detected no differences between first episode patients and controls. Age of onset ⩽21 was associated with a smaller hippocampus (Cohen’s d=−0.20, % difference=−1.85) and a trend toward smaller amygdala (Cohen’s d=−0.11, % difference=−1.23) and larger lateral ventricles (Cohen’s d=0.12, % difference=5.11). Symptom severity at study inclusion was not associated with any regional brain volumes. Sample characteristics such as mean age, proportion of antidepressant users and proportion of remitted patients, and methodological characteristics did not significantly moderate alterations in brain volumes in MDD. Samples with a higher proportion of antipsychotic medication users showed larger caudate volumes in MDD patients compared with controls. This currently largest worldwide effort to identify subcortical brain alterations showed robust smaller hippocampal volumes in MDD patients, moderated by age of onset and first episode versus recurrent episode status.
Resumo:
Identifying genetic variants influencing human brain structures may reveal new biological mechanisms underlying cognition and neuropsychiatric illness. The volume of the hippocampus is a biomarker of incipient Alzheimer's disease and is reduced in schizophrenia, major depression and mesial temporal lobe epilepsy. Whereas many brain imaging phenotypes are highly heritable, identifying and replicating genetic influences has been difficult, as small effects and the high costs of magnetic resonance imaging (MRI) have led to underpowered studies. Here we report genome-wide association meta-analyses and replication for mean bilateral hippocampal, total brain and intracranial volumes from a large multinational consortium. The intergenic variant rs7294919 was associated with hippocampal volume (12q24.22; N = 21,151; P = 6.70 × 10 -16) and the expression levels of the positional candidate gene TESC in brain tissue. Additionally, rs10784502, located within HMGA2, was associated with intracranial volume (12q14.3; N = 15,782; P = 1.12 × 10 -12). We also identified a suggestive association with total brain volume at rs10494373 within DDR2 (1q23.3; N = 6,500; P = 5.81 × 10 -7).
Resumo:
This paper describes algorithms that can identify patterns of brain structure and function associated with Alzheimer's disease, schizophrenia, normal aging, and abnormal brain development based on imaging data collected in large human populations. Extraordinary information can be discovered with these techniques: dynamic brain maps reveal how the brain grows in childhood, how it changes in disease, and how it responds to medication. Genetic brain maps can reveal genetic influences on brain structure, shedding light on the nature-nurture debate, and the mechanisms underlying inherited neurobehavioral disorders. Recently, we created time-lapse movies of brain structure for a variety of diseases. These identify complex, shifting patterns of brain structural deficits, revealing where, and at what rate, the path of brain deterioration in illness deviates from normal. Statistical criteria can then identify situations in which these changes are abnormally accelerated, or when medication or other interventions slow them. In this paper, we focus on describing our approaches to map structural changes in the cortex. These methods have already been used to reveal the profile of brain anomalies in studies of dementia, epilepsy, depression, childhood- and adult-onset schizophrenia, bipolar disorder, attention-deficit/hyperactivity disorder, fetal alcohol syndrome, Tourette syndrome, Williams syndrome, and in methamphetamine abusers. Specifically, we describe an image analysis pipeline known as cortical pattern matching that helps compare and pool cortical data over time and across subjects. Statistics are then defined to identify brain structural differences between groups, including localized alterations in cortical thickness, gray matter density (GMD), and asymmetries in cortical organization. Subtle features, not seen in individual brain scans, often emerge when population-based brain data are averaged in this way. Illustrative examples are presented to show the profound effects of development and various diseases on the human cortex. Dynamically spreading waves of gray matter loss are tracked in dementia and schizophrenia, and these sequences are related to normally occurring changes in healthy subjects of various ages.
Resumo:
The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.
Resumo:
In this paper we illustrate a set of features of the Apromore process model repository for analyzing business process variants. Two types of analysis are provided: one is static and based on differences on the process control flow, the other is dynamic and based on differences in the process behavior between the variants. These features combine techniques for the management of large process model collections with those for mining process knowledge from process execution logs. The tool demonstration will be useful for researchers and practitioners working on large process model collections and process execution logs, and specifically for those with an interest in understanding, managing and consolidating business process variants both within and across organizational boundaries.
Resumo:
The air transport industry is a complex environment facing many challenges while coping with changing global imperatives. International airport passenger facilitation is a part of the socio-technical system where these challenges manifest, impacting businesses in terms of time, cost and quality. This research inductively develops an extensible configurable reference model by capturing and merging the cross-organisational facilitation process from five Australian airports. The reference model can be filtered according to the contextual needs of airport users to inform relevant and accurate business process design. The domain and methodological contributions constitute the first reported application of questionnaire-based configurability to airport processes.
Resumo:
Pitch discrimination is a fundamental property of the human auditory system. Our understanding of pitch-discrimination mechanisms is important from both theoretical and clinical perspectives. The discrimination of spectrally complex sounds is crucial in the processing of music and speech. Current methods of cognitive neuroscience can track the brain processes underlying sound processing either with precise temporal (EEG and MEG) or spatial resolution (PET and fMRI). A combination of different techniques is therefore required in contemporary auditory research. One of the problems in comparing the EEG/MEG and fMRI methods, however, is the fMRI acoustic noise. In the present thesis, EEG and MEG in combination with behavioral techniques were used, first, to define the ERP correlates of automatic pitch discrimination across a wide frequency range in adults and neonates and, second, they were used to determine the effect of recorded acoustic fMRI noise on those adult ERP and ERF correlates during passive and active pitch discrimination. Pure tones and complex 3-harmonic sounds served as stimuli in the oddball and matching-to-sample paradigms. The results suggest that pitch discrimination in adults, as reflected by MMN latency, is most accurate in the 1000-2000 Hz frequency range, and that pitch discrimination is facilitated further by adding harmonics to the fundamental frequency. Newborn infants are able to discriminate a 20% frequency change in the 250-4000 Hz frequency range, whereas the discrimination of a 5% frequency change was unconfirmed. Furthermore, the effect of the fMRI gradient noise on the automatic processing of pitch change was more prominent for tones with frequencies exceeding 500 Hz, overlapping with the spectral maximum of the noise. When the fundamental frequency of the tones was lower than the spectral maximum of the noise, fMRI noise had no effect on MMN and P3a, whereas the noise delayed and suppressed N1 and exogenous N2. Noise also suppressed the N1 amplitude in a matching-to-sample working memory task. However, the task-related difference observed in the N1 component, suggesting a functional dissociation between the processing of spatial and non-spatial auditory information, was partially preserved in the noise condition. Noise hampered feature coding mechanisms more than it hampered the mechanisms of change detection, involuntary attention, and the segregation of the spatial and non-spatial domains of working-memory. The data presented in the thesis can be used to develop clinical ERP-based frequency-discrimination protocols and combined EEG and fMRI experimental paradigms.