942 resultados para Distortion of the currents


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of chloride on the electrodeposition of lead films and their dissolution in anodic stripping voltammetric experiments was examined. Gold substrates were plated with lead films, and mass changes were monitored by using the electrochemical quartz crystal microbalance with dissipation factor (EQCM-D). The results showed that the amount of electrodeposited lead is slightly dependent on the chloride concentration. The charge/mass ratio data indicated the presence of Pb(I) and Pb(II) as a result of film dissolution, and the precipitation and deposition of PbCl2 onto the electrode surface. Scanning electron microscopy images revealed that the morphology of the lead film was strongly influenced by chloride present in the plating solution and that much rougher films were obtained in comparison with those obtained in the absence of chloride. The rate of the anodic dissolution was higher for lead films with higher surface areas, which lead to an increase in their stripping voltammetric currents. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study is understanding the properties of a new group of redox proteins having in common a DOMON-type domain with characteristics of cytochromes b. The superfamily of proteins containing a DOMON of this type includes a few protein families. With the aim of better characterizing this new protein family, the present work addresses both a CyDOM protein (a cytochrome b561) and a protein only comprised of DOMON(AIR12), both of plant origin. Apoplastic ascorbate can be regenerated from monodehydroascorbate by a trans-plasma membrane redox system which uses cytosolic ascorbate as a reductant and comprises a high potential cytochrome b. We identified the major plasma membrane (PM) ascorbate-reducible b-type cytochrome of bean (Phaseolus vulgaris) and soybean (Glycine max) hypocotyls as orthologs of Arabidopsis auxin-responsive gene air12. The protein, which is glycosylated and glycosylphosphatidylinositol-anchored to the external side of the PM in vivo, was expressed in Pichia pastoris in a recombinant form, lacking the glycosylphosphatidylinositol-modification signal, and purified from the culture medium. Recombinant AIR12 is a soluble protein predicted to fold into a β-sandwich domain and belonging to the DOMON superfamily. It is shown to be a b-type cytochrome with a symmetrical α-band at 561 nm, to be fully reduced by ascorbate and fully oxidized by monodehydroascorbate. Redox potentiometry suggests that AIR12 binds two high-potential hemes (Em,7 +135 and +236 mV). Phylogenetic analyses reveal that the auxin-responsive genes AIR12 constitute a new family of plasma membrane b-type cytochromes specific to flowering plants. Although AIR12 is one of the few redox proteins of the PM characterized to date, the role of AIR12 in trans-PM electron transfer would imply interaction with other partners which are still to be identified. Another part of the present project was aimed at understanding of a soybean protein comprised of a DOMON fused with a well-defined b561 cytochrome domain (CyDOM). Various bioinformatic approaches show this protein to be composed of an N-terminal DOMON followed by b561 domain. The latter contains five transmembrane helices featuring highly conserved histidines, which might bind haem groups. The CyDOM has been cloned and expressed in the yeast Pichia pastoris, and spectroscopic analyses have been accomplished on solubilized yeast membranes. CyDOM clearly reveal the properties of b-type cytochrome. The results highlight the fact that CyDOM is clearly able to lead an electron flux through the plasmamembrane. Voltage clamp experiments demonstrate that Xenopus laevis oocytes transformed with CyDOM of soybean exhibit negative electrical currents in presence of an external electron acceptor. Analogous investigations were carried out with SDR2, a CyDOM of Drosophila melanogaster which shows an electron transport capacity even higher than plant CyDOM. As quoted above, these data reinforce those obtained in plant CyDOM on the one hand, and on the other hand allow to attribute to SDR2-like proteins the properties assigned to CyDOM. Was expressed in Regenerated tobacco roots, transiently transformed with infected a with chimeral construct GFP: CyDOM (by A. rhizogenes infection) reveals a plasmamembrane localization of CyDOM both in epidermal cells of the elongation zone of roots and in root hairs. In conclusion. Although the data presented here await to be expanded and in part clarified, it is safe to say they open a new perspective about the role of this group of proteins. The biological relevance of the functional and physiological implications of DOMON redox domains seems noteworthy, and it can but increase with future advances in research. Beyond the very finding, however interesting in itself, of DOMON domains as extracellular cytochromes, the present study testifies to the fact that cytochrome proteins containing DOMON domains of the type of “CyDOM” can transfer electrons through membranes and may represent the most important redox component of the plasmamembrane as yet discovered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is a detailed study of hydrodynamic processes in a defined area, the littoral in front of the Venice Lagoon and its inlets, which are complex morphological areas of interconnection. A finite element hydrodynamic model of the Venice Lagoon and the Adriatic Sea has been developed in order to study the coastal current patterns and the exchanges at the inlets of the Venice Lagoon. This is the first work in this area that tries to model the interaction dynamics, running together a model for the lagoon and the Adriatic Sea. First the barotropic processes near the inlets of the Venice Lagoon have been studied. Data from more than ten tide gauges displaced in the Adriatic Sea have been used in the calibration of the simulated water levels. To validate the model results, empirical flux data measured by ADCP probes installed inside the inlets of Lido and Malamocco have been used and the exchanges through the three inlets of the Venice Lagoon have been analyzed. The comparison between modelled and measured fluxes at the inlets outlined the efficiency of the model to reproduce both tide and wind induced water exchanges between the sea and the lagoon. As a second step, also small scale processes around the inlets that connect the Venice lagoon with the Northern Adriatic Sea have been investigated by means of 3D simulations. Maps of vorticity have been produced, considering the influence of tidal flows and wind stress in the area. A sensitivity analysis has been carried out to define the importance of the advection and of the baroclinic pressure gradients in the development of vortical processes seen along the littoral close to the inlets. Finally a comparison with real data measurements, surface velocity data from HF Radar near the Venice inlets, has been performed, which allows for a better understanding of the processes and their seasonal dynamics. The results outline the predominance of wind and tidal forcing in the coastal area. Wind forcing acts mainly on the mean coastal current inducing its detachment offshore during Sirocco events and an increase of littoral currents during Bora events. The Bora action is more homogeneous on the whole coastal area whereas the Sirocco strengthens its impact in the South, near Chioggia inlet. Tidal forcing at the inlets is mainly barotropic. The sensitivity analysis shows how advection is the main physical process responsible for the persistent vortical structures present along the littoral between the Venice Lagoon inlets. The comparison with measurements from HF Radar not only permitted a validation the model results, but also a description of different patterns in specific periods of the year. The success of the 2D and the 3D simulations on the reproduction both of the SSE, inside and outside the Venice Lagoon, of the tidal flow, through the lagoon inlets, and of the small scale phenomena, occurring along the littoral, indicates that the finite element approach is the most suitable tool for the investigation of coastal processes. For the first time, as shown by the flux modeling, the physical processes that drive the interaction between the two basins were reproduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intraspecific phylogeography of four European coastal plants, Crithmum maritimum, Halimione portulacoides, Salsola kali and Calystegia soldanella, was inferred from AFLP and ITS data. Only in C. maritimum, H. portulacoides and S. kali, a spatial genetic structure was revealed. The phylogeographic similarities and dissimilarities of these species include: (1) All three have distinct Black/Aegean and Adriatic Sea clusters. (2) Salsola kali and H. portulacoides show a distinct Atlantic/North Sea/Baltic Sea cluster, while Atlantic and eastern Spanish material of C. maritimum clustered together. (3) In the west Mediterranean, only S. kali forms a single cluster, while both H. portulacoides and C. maritimum display a phylogeographic break in the vicinity of the southern French coast. For S. kali, AFLP and ITS data concur in identifying separate Atlantic, east and west Mediterranean clades. All these patterns are postulated to result from both temperature changes during the last glacial and contemporary sea currents. No geographic AFLP structure was revealed in C. soldanella, both at the range-wide and population level. This was attributed to the remarkable seed dispersal ability of this species and possibly its longevity and clonal growth, preserving a random pattern of genetic variation generated by long-distance seed dispersal over long time periods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linear dispersal systems, such as coastal habitats, are well suited for phylogeographic studies because of their low spatial complexity compared to three dimensional habitats. Widely distributed coastal plant species additionally show azonal and often essentially continuous distributions. These properties, firstly, make it easier to reconstruct historical distributions of coastal plants and, secondly, make it more likely that present distributions contain both Quaternary refugia and recently colonized areas. Taken together this makes it easier to formulate phylogeographic hypotheses. This work investigated the phylogeography of Cakile maritima and Eryngium maritimum, two species growing in sandy habitats along the north Atlantic Ocean and the Mediterranean Sea coasts on two different spatial scales using AFLP data. The genetic structure of these species was investigated by sampling single individuals along most of their distributions from Turkey to south Sweden. On a regional scale the population genetic structure of both species was also studied in detail in the Bosporus and Dardanelles straits, the Strait of Gibraltar and along a continuous stretch of dunes in western France. Additionally, populations of C. maritima were investigated in the Baltic Sea/Kattegat/North Sea area. Over the complete sampling range the species show both differences and similarities in their genetic structure. In the Mediterranean Sea, both species contain Aegean Sea/Black Sea and west Mediterranean clusters. Cakile maritima additionally shows a clustering of Ionian Sea/Adriatic Sea collections. Further, both species show a subdivision of Atlantic Ocean/North Sea/Baltic Sea material from Mediterranean. Within the Atlantic Ocean group, C. maritima from the Baltic Sea and the most northern Atlantic localities form an additional cluster while no such substructure was found in E. maritimum. In all three instances where population genetic investigations of both species were performed in the same area, the results showed almost complete congruency of spatial genetic patterns. In the Aegean/Black Sea/Marmara region a subdivision of populations into a Black Sea, a Sea of Marmara and an Aegean Sea group is shared by both species. In addition the Sea of Marmara populations are more close to the Aegean Sea populations than they are to the Black Sea populations in both cases. Populations from the Atlantic side of the Strait of Gibraltar are differentiated from those on the Mediterranean side in both species, a pattern that confirms the results of the wide scale study. Along the dunes of West France no clear genetic structure could be detected in any of the species. Additionally, the results from the Baltic Sea/North Sea populations of C. maritima did not reveal any geographical genetic pattern. It is postulated that the many congruencies between the species are mainly due to a predominantly sea water mediated seed dispersal in both species and their shared sandy habitat. The results are compared to hypothetical distributions for the last glacial maximum based on species specific temperature requirements. It is argued that in both species the geographical borders of the clusters in the Mediterranean area were not affected by quaternary temperature changes and that the Aegean/Black Sea/Marmara cluster, and possibly the Ionian Sea/Adriatic Sea cluster in C. maritima, is the result of sea currents that isolate these basins from the rest of the sampled areas. The genetic gap in the Strait of Gibraltar between Atlantic Ocean and Mediterranean Sea populations in both species is also explained in terms of sea currents. The existence of three subgroups corresponding to the Aegean Sea, Black Sea and Sea of Marmara basins is suggested to have arisen due to geographical isolation during periods of global sea regressions in the glacials. The population genetic evidence was inconclusive regarding the Baltic Sea cluster of C. Maritima from the wide scale study. The results of this study are very similar to those of an investigation of three other coastal plant species over a similar range. This suggests that the phylo-geographic patterns of widespread coastal plants may be more predictable than those of other terrestrial plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The term "Brain Imaging" identi�es a set of techniques to analyze the structure and/or functional behavior of the brain in normal and/or pathological situations. These techniques are largely used in the study of brain activity. In addition to clinical usage, analysis of brain activity is gaining popularity in others recent �fields, i.e. Brain Computer Interfaces (BCI) and the study of cognitive processes. In this context, usage of classical solutions (e.g. f MRI, PET-CT) could be unfeasible, due to their low temporal resolution, high cost and limited portability. For these reasons alternative low cost techniques are object of research, typically based on simple recording hardware and on intensive data elaboration process. Typical examples are ElectroEncephaloGraphy (EEG) and Electrical Impedance Tomography (EIT), where electric potential at the patient's scalp is recorded by high impedance electrodes. In EEG potentials are directly generated from neuronal activity, while in EIT by the injection of small currents at the scalp. To retrieve meaningful insights on brain activity from measurements, EIT and EEG relies on detailed knowledge of the underlying electrical properties of the body. This is obtained from numerical models of the electric �field distribution therein. The inhomogeneous and anisotropic electric properties of human tissues make accurate modeling and simulation very challenging, leading to a tradeo�ff between physical accuracy and technical feasibility, which currently severely limits the capabilities of these techniques. Moreover elaboration of data recorded requires usage of regularization techniques computationally intensive, which influences the application with heavy temporal constraints (such as BCI). This work focuses on the parallel implementation of a work-flow for EEG and EIT data processing. The resulting software is accelerated using multi-core GPUs, in order to provide solution in reasonable times and address requirements of real-time BCI systems, without over-simplifying the complexity and accuracy of the head models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerosi studi mostrano che gli intervalli temporali sono rappresentati attraverso un codice spaziale che si estende da sinistra verso destra, dove gli intervalli brevi sono rappresentati a sinistra rispetto a quelli lunghi. Inoltre tale disposizione spaziale del tempo può essere influenzata dalla manipolazione dell’attenzione-spaziale. La presente tesi si inserisce nel dibattito attuale sulla relazione tra rappresentazione spaziale del tempo e attenzione-spaziale attraverso l’uso di una tecnica che modula l’attenzione-spaziale, ovvero, l’Adattamento Prismatico (AP). La prima parte è dedicata ai meccanismi sottostanti tale relazione. Abbiamo mostrato che spostando l’attenzione-spaziale con AP, verso un lato dello spazio, si ottiene una distorsione della rappresentazione di intervalli temporali, in accordo con il lato dello spostamento attenzionale. Questo avviene sia con stimoli visivi, sia con stimoli uditivi, nonostante la modalità uditiva non sia direttamente coinvolta nella procedura visuo-motoria di AP. Questo risultato ci ha suggerito che il codice spaziale utilizzato per rappresentare il tempo, è un meccanismo centrale che viene influenzato ad alti livelli della cognizione spaziale. La tesi prosegue con l’indagine delle aree corticali che mediano l’interazione spazio-tempo, attraverso metodi neuropsicologici, neurofisiologici e di neuroimmagine. In particolare abbiamo evidenziato che, le aree localizzate nell’emisfero destro, sono cruciali per l’elaborazione del tempo, mentre le aree localizzate nell’emisfero sinistro sono cruciali ai fini della procedura di AP e affinché AP abbia effetto sugli intervalli temporali. Infine, la tesi, è dedicata allo studio dei disturbi della rappresentazione spaziale del tempo. I risultati ci indicano che un deficit di attenzione-spaziale, dopo danno emisferico destro, provoca un deficit di rappresentazione spaziale del tempo, che si riflette negativamente sulla vita quotidiana dei pazienti. Particolarmente interessanti sono i risultati ottenuti mediante AP. Un trattamento con AP, efficace nel ridurre il deficit di attenzione-spaziale, riduce anche il deficit di rappresentazione spaziale del tempo, migliorando la qualità di vita dei pazienti.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research field of my PhD concerns mathematical modeling and numerical simulation, applied to the cardiac electrophysiology analysis at a single cell level. This is possible thanks to the development of mathematical descriptions of single cellular components, ionic channels, pumps, exchangers and subcellular compartments. Due to the difficulties of vivo experiments on human cells, most of the measurements are acquired in vitro using animal models (e.g. guinea pig, dog, rabbit). Moreover, to study the cardiac action potential and all its features, it is necessary to acquire more specific knowledge about single ionic currents that contribute to the cardiac activity. Electrophysiological models of the heart have become very accurate in recent years giving rise to extremely complicated systems of differential equations. Although describing the behavior of cardiac cells quite well, the models are computationally demanding for numerical simulations and are very difficult to analyze from a mathematical (dynamical-systems) viewpoint. Simplified mathematical models that capture the underlying dynamics to a certain extent are therefore frequently used. The results presented in this thesis have confirmed that a close integration of computational modeling and experimental recordings in real myocytes, as performed by dynamic clamp, is a useful tool in enhancing our understanding of various components of normal cardiac electrophysiology, but also arrhythmogenic mechanisms in a pathological condition, especially when fully integrated with experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Der Spin Seebeck Effekt repräsentiert einen neuartigen Spin kalorischen Effekt mit vorteilhaften und aussichtsreichen Eigenschaften für Anwendungen in den Gebieten der Spintronik und Thermoelektrik.rnIn dieser Arbeit präsentieren wir eine umfangreiche Untersuchung des Spin Seebeck Effekts in isolierenden, magnetischen Granaten und geben Antworten zum kontrovers diskutierten Ursprung des Effekts. Um dieses Ziel zu erreichen, haben wir die Abhängigkeit des Spin Seebeck Effekts von der Dicke des Ferromagneten, der Temperatur, der Stärke des magnetisches Feldes, der Grenzflächen und des Detektormaterials, sowie Kombinationen dieser Parameter gemessen. Im Zuge dessen haben wir das Wachstum der untersuchten magnetischen Granate optimiert und eine umfassende Analyse der strukturellen und magnetischen Parameter durchgeführt, um Einflüsse der Probenqualität auszuschließen. Des Weiteren zeigte eine Untersuchung des magnetoresistiven Effekts, welcher als mögliche Ursache des Effekts galt, in Kombination mit einer Studie des Messaufbaus, dass parasitäre Einflüsse auf das Messergebnis ausgeschlossen werden können. Unsere Ergebnisse zeigen, dass der Spin Seebeck Effekt mit zunehmender Dicke des Ferromagneten eine Sättigung des Signals aufweist. Diese hängt zudem von der Temperatur ab, da mit abnehmender Temperatur die Sättigung erst bei dickeren Filmen auftritt. Außerdem fanden unsere Messungen ein Maximum des Spin Seebeck Effekts für Temperaturen unterhalb der Raumtemperatur, welcher sowohl von der Dicke des Materials als auch der Magnetfeldstärke und dem Detektormaterial beeinflusst wird. In Messungen bei hohen magnetischen Feldstärken beobachteten wir eine Unterdrückung des Messsignals, dessen Ursache mithilfe von Simulationen auf den magnonischen Ursprung des Spin Seebeck Effekts zurückgeführt werden kann. Dies unterstreicht, dass der Effekt auf vom Ferromagneten emittierten Magnonen basiert. Im letzten Abschnitt dieser Arbeit präsentieren wir Messungen in einem bislang nicht untersuchten ferrimagnetischen Material, welche zwei Vorzeichenwechsel des Spin Seebeck Effekts als Funktion der Temperatur aufzeigen. Dieses bisher unbekannte Signalverhalten betont, dass der Effekt aus einem komplexen Zusammenspiel der magnonischen Moden resultiert und zusätzlich vom Detektormaterial abhängt.rnSomit tragen unsere Ergebnisse und Beobachtungen im hohen Maße zur Beantwortung der Frage nach dem Ursprungs des Spin Seebeck Effekts bei und zeigen neuartige bisher nicht beobachtete Effekte, welche ein neues Kapitel für das Gebiet der Spin Kaloritronik eröffnen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monepantel is the first drug of a new family of anthelmintics, the amino acetonitrile derivatives (AAD), presently used to treat ruminants infected with gastrointestinal nematodes such as Haemonchus contortus. Monepantel shows an excellent tolerability in mammals and is active against multidrug-resistant parasites, indicating that its molecular target is absent or inaccessible in the host and is different from those of the classic anthelmintics. Genetic approaches with mutant nematodes have suggested acetylcholine receptors of the DEG-3 subfamily as the targets of AADs, an enigmatic clade of ligand-gated ion channels that is specific to nematodes and does not occur in mammals. Here we demonstrate direct interaction of monepantel, its major active metabolite monepantel sulfone, and other AADs with potential targets of the DEG-3 subfamily of acetylcholine receptors. H. contortus DEG-3/DES-2 receptors were functionally expressed in Xenopus laevis oocytes and were found to be preferentially activated by choline, to permeate monovalent cations, and to a smaller extent, calcium ions. Although monepantel and monepantel sulfone did not activate the channels by themselves, they substantially enhanced the late currents after activation of the channels with choline, indicating that these AADs are type II positive allosteric modulators of H. contortus DEG-3/DES-2 channels. It is noteworthy that the R-enantiomer of monepantel, which is inactive as an anthelmintic, inhibited the late currents after stimulation of H. contortus DEG-3/DES-2 receptors with choline. In summary, we present the first direct evidence for interaction of AADs with DEG-3-type acetylcholine receptors and discuss these findings in the context of anthelmintic action of AADs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 3 angstrom resolution crystal structure of the Escherichia coli catabolite gene activator protein (CAP) complexed with a 30-base pair DNA sequence shows that the DNA is bent by 900. This bend results almost entirely from two 400 kinks that occur between TG/CA base pairs at positions 5 and 6 on each side of the dyad axis of the complex. DNA sequence discrimination by CAP derives both from sequence-dependent distortion of the DNA helix and from direct hydrogen-bonding interactions between three protein side chains and the exposed edges of three base pairs in the major groove of the DNA. The structure of this transcription factor-DNA complex provides insights into possible mechanisms of transcription activation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The voltage-gated cardiac potassium channel hERG1 (human ether-à-gogo-related gene 1) plays a key role in the repolarization phase of the cardiac action potential (AP). Mutations in its gene, KCNH2, can lead to defects in the biosynthesis and maturation of the channel, resulting in congenital long QT syndrome (LQTS). To identify the molecular mechanisms regulating the density of hERG1 channels at the plasma membrane, we investigated channel ubiquitylation by ubiquitin ligase Nedd4-2, a post-translational regulatory mechanism previously linked to other ion channels. We found that whole-cell hERG1 currents recorded in HEK293 cells were decreased upon neural precursor cell expressed developmentally down-regulated 4-2 (Nedd4-2) co-expression. The amount of hERG1 channels in total HEK293 lysates and at the cell surface, as assessed by Western blot and biotinylation assays, respectively, were concomitantly decreased. Nedd4-2 and hERG1 interact via a PY motif located in the C-terminus of hERG1. Finally, we determined that Nedd4-2 mediates ubiquitylation of hERG1 and that deletion of this motif affects Nedd4-2-dependent regulation. These results suggest that ubiquitylation of the hERG1 protein by Nedd4-2, and its subsequent down-regulation, could represent an important mechanism for modulation of the duration of the human cardiac action potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inhibitor cystine-knot motif identified in the structure of CSTX-1 from Cupiennius salei venom suggests that this toxin may act as a blocker of ion channels. Whole-cell patch-clamp experiments performed on cockroach neurons revealed that CSTX-1 produced a slow voltage-independent block of both mid/low- (M-LVA) and high-voltage-activated (HVA) insect Ca(v) channels. Since C. salei venom affects both insect as well as rodent species, we investigated whether Ca(v) channel currents of rat neurons are also inhibited by CSTX-1. CSTX-1 blocked rat neuronal L-type, but no other types of HVA Ca(v) channels, and failed to modulate LVA Ca(v) channel currents. Using neuroendocrine GH3 and GH4 cells, CSTX-1 produced a rapid voltage-independent block of L-type Ca(v) channel currents. The concentration-response curve was biphasic in GH4 neurons and the subnanomolar IC(50) values were at least 1000-fold lower than in GH3 cells. L-type Ca(v) channel currents of skeletal muscle myoballs and other voltage-gated ion currents of rat neurons, such as I(Na(v)) or I(K(v)) were not affected by CSTX-1. The high potency and selectivity of CSTX-1 for a subset of L-type channels in mammalian neurons may enable the toxin to be used as a molecular tool for the investigation of this family of Ca(v) channels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vitamin C (L-ascorbic acid) is an essential micronutrient that serves as an antioxidant and as a cofactor in many enzymatic reactions. Intestinal absorption and renal reabsorption of the vitamin is mediated by the epithelial apical L-ascorbic acid cotransporter SVCT1 (SLC23A1). We explored the molecular mechanisms of SVCT1-mediated L-ascorbic acid transport using radiotracer and voltage-clamp techniques in RNA-injected Xenopus oocytes. L-ascorbic acid transport was saturable (K(0.5) approximately 70 microM), temperature dependent (Q(10) approximately 5), and energized by the Na(+) electrochemical potential gradient. We obtained a Na(+)-L-ascorbic acid coupling ratio of 2:1 from simultaneous measurement of currents and fluxes. L-ascorbic acid and Na(+) saturation kinetics as a function of cosubstrate concentrations revealed a simultaneous transport mechanism in which binding is ordered Na(+), L-ascorbic acid, Na(+). In the absence of L-ascorbic acid, SVCT1 mediated pre-steady-state currents that decayed with time constants 3-15 ms. Transients were described by single Boltzmann distributions. At 100 mM Na(+), maximal charge translocation (Q(max)) was approximately 25 nC, around a midpoint (V(0.5)) at -9 mV, and with apparent valence approximately -1. Q(max) was conserved upon progressive removal of Na(+), whereas V(0.5) shifted to more hyperpolarized potentials. Model simulation predicted that the pre-steady-state current predominantly results from an ion-well effect on binding of the first Na(+) partway within the membrane electric field. We present a transport model for SVCT1 that will provide a framework for investigating the impact of specific mutations and polymorphisms in SLC23A1 and help us better understand the contribution of SVCT1 to vitamin C metabolism in health and disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RATIONALE The vaporization of Sm, Eu, and Yb tri- and dibromides is accompanied by decomposition and disproportionation reactions. These result in complex vapor compositions whose analysis is an intricate problem for experimentalists. Approaches have been developed to interpret mass spectra and accurately determine the vapor composition of thermally unstable compounds. METHODS A sector type magnet instrument was used. A combined ion source allowed the study of both the molecular and ionic vapor compositions in the electron ionization (EI) and the thermionic emission (TE) modes. The methodological approaches were based on a joint analysis of the ionization efficiency functions, the temperature and time dependences of the ion currents, and special mathematical data evaluation. RESULTS The vaporization of SmBr3, YbBr3, SmBr2, EuBr2, and YbBr2 was studied in the temperature range of 850–1300 K. An initial stage of incongruent vaporization was observed in the case of the tribromides, SmBr2, and YbBr2. This eventually changed to a congruent vaporization stage. Various neutral (Ln, Br, Br2, LnBr, LnBr2, LnBr3, Ln2Br4, Ln2Br5, and Ln2Br6) and charged (Br–, LnBr3–, LnBr4–) species were detected at different vaporization stages. CONCLUSIONS The quantitative vapor composition of Sm, Eu, and Yb tri- and dibromides was determined. It was found that only EuBr2 was stable in the studied temperature range. The developed approaches can be useful in the case of other thermally unstable compounds.