888 resultados para Discrete Time Branching Processes
Resumo:
Use of short fibers as reinforcing fillers in rubber composites is on an increasing trend. They are popular due to the possibility of obtaining anisotropic properties, ease of processing and economy. In the preparation of these composites short fibers are incorporated on two roll mixing mills or in internal mixers. This is a high energy intensive time consuming process. This calls for developing less energy intensive and less time consuming processes for incorporation and distribution of short fibers in the rubber matrix. One method for this is to incorporate fibers in the latex stage. The present study is primarily to optimize the preparation of short fiber- natural rubber composite by latex stage compounding and to evaluate the resulting composites in terms of mechanical, dynamic mechanical and thermal properties. A synthetic fiber (Nylon) and a natural fiber (Coir) are used to evaluate the advantages of the processing through latex stage. To extract the full reinforcing potential of the coir fibers the macro fibers are converted to micro fibers through chemical and mechanical means. The thesis is presented in 7 chapters
Resumo:
Piecewise linear models systems arise as mathematical models of systems in many practical applications, often from linearization for nonlinear systems. There are two main approaches of dealing with these systems according to their continuous or discrete-time aspects. We propose an approach which is based on the state transformation, more particularly the partition of the phase portrait in different regions where each subregion is modeled as a two-dimensional linear time invariant system. Then the Takagi-Sugeno model, which is a combination of local model is calculated. The simulation results show that the Alpha partition is well-suited for dealing with such a system
Determinantes de la deserción universitaria en la Facultad de Economía de la Universidad del Rosario
Resumo:
Este trabajo analiza el problema de la deserción estudiantil en la Facultad de Economía de la Universidad del Rosario, a través del estudio de los factores individuales, académicos y socioeconómicos que implican el riesgo de desertar. Con este objetivo, se utiliza el análisis de modelos de duración. Específi camente, se estima un modelo de riesgo proporcional de tiempo discreto con y sin heterogeneidad observada (Prentice- Gloeckler, 1978 y Meyer, 1980). Los resultados muestran que los estudiantes de sexo masculino, la vinculación de los estudiantes al mercado laboral y los estudiantes provenientes de otras regiones, tienen el mayor riesgo de deserción. Además, la edad del estudiante incrementa el riesgo, sin embargo, su efecto decrece marginalmente al aumentar la edad. Palabras clave: deserción estudiantil, modelos de duración, riesgo proporcional. Clasifi cación JEL: C41, C13, I21.
Resumo:
El presente trabajo se enfoca en el análisis de las acciones de Ecopetrol, empresa representativa del mercado de Extracción de Petróleo y Gas natural en Colombia (SP&G), durante el periodo, del 22 de mayo de 2012 al 30 de agosto de 2013. Durante este espacio de tiempo la acción sufrió una serie de variaciones en su precio las cuales se relacionaban a la nueva emisión de acciones que realizo la Compañía. Debido a este cambio en el comportamiento del activo se generaron una serie de interrogantes sobre, (i) la reacción del mercado ante diferentes sucesos ocurridos dentro de las firmas y en su entorno (ii) la capacidad de los modelos financieros de predecir y entender las posibles reacciones observadas de los activos (entendidos como deuda). Durante el desarrollo del presente trabajo se estudiará la pertinencia del mismo, en línea con los objetivos y desarrollos de la Escuela de Administración de la Universidad del Rosario. Puntualmente en temas de Perdurabilidad direccionados a la línea de Gerencia. Donde el entendimiento de la deuda como parte del funcionamiento actual y como variable determinante para el comportamiento futuro de las organizaciones tiene especial importancia. Una vez se clarifica la relación entre el presente trabajo y la Universidad, se desarrollan diferentes conceptos y teorías financieras que han permitido conocer y estudiar de manera más específica el mercado, con el objetivo de reducir los riesgos de las inversiones realizadas. Éste análisis se desarrolla en dos partes: (i) modelos de tiempo discreto y (ii) modelos de tiempo continúo. Una vez se tiene mayor claridad sobre los modelos estudiados hasta el momento se realiza el respectivo análisis de los datos mediante modelos de caos y análisis recurrente los cuales nos permiten entender que las acciones se comportan de manera caótica pero que establecen ciertas relaciones entre los precios actuales y los históricos, desarrollando comportamientos definidos entre los precios, las cantidades, el entorno macroeconómico y la organización. De otra parte, se realiza una descripción del mercado de petróleo en Colombia y se estudia a Ecopetrol como empresa y eje principal del mercado descrito en el país. La compañía Ecopetrol es representativa debido a que es uno de los mayores aportantes fiscales del país, pues sus ingresos se desprenden de bienes que se encuentran en el subsuelo por lo que la renta petrolera incluye impuestos a la producción transformación y consumo (Ecopetrol, 2003). Por último, se presentan los resultados del trabajo, así como el análisis que da lugar para presentar ciertas recomendaciones a partir de lo observado.
Resumo:
The relationship between minimum variance and minimum expected quadratic loss feedback controllers for linear univariate discrete-time stochastic systems is reviewed by taking the approach used by Caines. It is shown how the two methods can be regarded as providing identical control actions as long as a noise-free measurement state-space model is employed.
Resumo:
A polynomial-based ARMA model, when posed in a state-space framework can be regarded in many different ways. In this paper two particular state-space forms of the ARMA model are considered, and although both are canonical in structure they differ in respect of the mode in which disturbances are fed into the state and output equations. For both forms a solution is found to the optimal discrete-time observer problem and algebraic connections between the two optimal observers are shown. The purpose of the paper is to highlight the fact that the optimal observer obtained from the first state-space form, commonly known as the innovations form, is not that employed in an optimal controller, in the minimum-output variance sense, whereas the optimal observer obtained from the second form is. Hence the second form is a much more appropriate state-space description to use for controller design, particularly when employed in self-tuning control schemes.
Resumo:
This paper considers the use of a discrete-time deadbeat control action on systems affected by noise. Variations on the standard controller form are discussed and comparisons are made with controllers in which noise rejection is a higher priority objective. Both load and random disturbances are considered in the system description, although the aim of the deadbeat design remains as a tailoring of reference input variations. Finally, the use of such a deadbeat action within a self-tuning control framework is shown to satisfy, under certain conditions, the self-tuning property, generally though only when an extended form of least-squares estimation is incorporated.
Resumo:
A self-tuning controller which automatically assigns weightings to control and set-point following is introduced. This discrete-time single-input single-output controller is based on a generalized minimum-variance control strategy. The automatic on-line selection of weightings is very convenient, especially when the system parameters are unknown or slowly varying with respect to time, which is generally considered to be the type of systems for which self-tuning control is useful. This feature also enables the controller to overcome difficulties with non-minimum phase systems.
Resumo:
A discrete-time algorithm is presented which is based on a predictive control scheme in the form of dynamic matrix control. A set of control inputs are calculated and made available at each time instant, the actual input applied being a weighted summation of the inputs within the set. The algorithm is directly applicable in a self-tuning format and is therefore suitable for slowly time-varying systems in a noisy environment.
Resumo:
This paper considers the use of radial basis function and multi-layer perceptron networks for linear or linearizable, adaptive feedback control schemes in a discrete-time environment. A close look is taken at the model structure selected and the extent of the resulting parameterization. A comparison is made with standard, nonneural network algorithms, e.g. self-tuning control.
Resumo:
DISOPE is a technique for solving optimal control problems where there are differences in structure and parameter values between reality and the model employed in the computations. The model reality differences can also allow for deliberate simplification of model characteristics and performance indices in order to facilitate the solution of the optimal control problem. The technique was developed originally in continuous time and later extended to discrete time. The main property of the procedure is that by iterating on appropriately modified model based problems the correct optimal solution is achieved in spite of the model-reality differences. Algorithms have been developed in both continuous and discrete time for a general nonlinear optimal control problem with terminal weighting, bounded controls and terminal constraints. The aim of this paper is to show how the DISOPE technique can aid receding horizon optimal control computation in nonlinear model predictive control.
Resumo:
In this paper, a discrete time dynamic integrated system optimisation and parameter estimation algorithm is applied to the solution of the nonlinear tracking optimal control problem. A version of the algorithm with a linear-quadratic model-based problem is developed and implemented in software. The algorithm implemented is tested with simulation examples.
Resumo:
We propose and analyse a class of evolving network models suitable for describing a dynamic topological structure. Applications include telecommunication, on-line social behaviour and information processing in neuroscience. We model the evolving network as a discrete time Markov chain, and study a very general framework where, conditioned on the current state, edges appear or disappear independently at the next timestep. We show how to exploit symmetries in the microscopic, localized rules in order to obtain conjugate classes of random graphs that simplify analysis and calibration of a model. Further, we develop a mean field theory for describing network evolution. For a simple but realistic scenario incorporating the triadic closure effect that has been empirically observed by social scientists (friends of friends tend to become friends), the mean field theory predicts bistable dynamics, and computational results confirm this prediction. We also discuss the calibration issue for a set of real cell phone data, and find support for a stratified model, where individuals are assigned to one of two distinct groups having different within-group and across-group dynamics.
Resumo:
For linear multivariable time-invariant continuous or discrete-time singular systems it is customary to use a proportional feedback control in order to achieve a desired closed loop behaviour. Derivative feedback is rarely considered. This paper examines how derivative feedback in descriptor systems can be used to alter the structure of the system pencil under various controllability conditions. It is shown that derivative and proportional feedback controls can be constructed such that the closed loop system has a given form and is also regular and has index at most 1. This property ensures the solvability of the resulting system of dynamic-algebraic equations. The construction procedures used to establish the theory are based only on orthogonal matrix decompositions and can therefore be implemented in a numerically stable way. The problem of pole placement with derivative feedback alone and in combination with proportional state feedback is also investigated. A computational algorithm for improving the “conditioning” of the regularized closed loop system is derived.
Resumo:
Microcontroller-based peak current mode control of a buck converter is investigated. The new solution uses a discrete time controller with digital slope compensation. This is implemented using only a single-chip microcontroller to achieve desirable cycle-by-cycle peak current limiting. The digital controller is implemented as a two-pole, two-zero linear difference equation designed using a continuous time model of the buck converter and a discrete time transform. Subharmonic oscillations are removed with digital slope compensation using a discrete staircase ramp. A 16 W hardware implementation directly compares analog and digital control. Frequency response measurements are taken and it is shown that the crossover frequency and expected phase margin of the digital control system match that of its analog counterpart.