957 resultados para Difference Equations with Maxima
Resumo:
Ce mémoire concerne la modélisation mathématique de l’érythropoïèse, à savoir le processus de production des érythrocytes (ou globules rouges) et sa régulation par l’érythropoïétine, une hormone de contrôle. Nous proposons une extension d’un modèle d’érythropoïèse tenant compte du vieillissement des cellules matures. D’abord, nous considérons un modèle structuré en maturité avec condition limite mouvante, dont la dynamique est capturée par des équations d’advection. Biologiquement, la condition limite mouvante signifie que la durée de vie maximale varie afin qu’il y ait toujours un flux constant de cellules éliminées. Par la suite, des hypothèses sur la biologie sont introduites pour simplifier ce modèle et le ramener à un système de trois équations différentielles à retard pour la population totale, la concentration d’hormones ainsi que la durée de vie maximale. Un système alternatif composé de deux équations avec deux retards constants est obtenu en supposant que la durée de vie maximale soit fixe. Enfin, un nouveau modèle est introduit, lequel comporte un taux de mortalité augmentant exponentiellement en fonction du niveau de maturité des érythrocytes. Une analyse de stabilité linéaire permet de détecter des bifurcations de Hopf simple et double émergeant des variations du gain dans la boucle de feedback et de paramètres associés à la fonction de survie. Des simulations numériques suggèrent aussi une perte de stabilité causée par des interactions entre deux modes linéaires et l’existence d’un tore de dimension deux dans l’espace de phase autour de la solution stationnaire.
Resumo:
Wind energy has emerged as a major sustainable source of energy.The efficiency of wind power generation by wind mills has improved a lot during the last three decades.There is still further scope for maximising the conversion of wind energy into mechanical energy.In this context,the wind turbine rotor dynamics has great significance.The present work aims at a comprehensive study of the Horizontal Axis Wind Turbine (HAWT) aerodynamics by numerically solving the fluid dynamic equations with the help of a finite-volume Navier-Stokes CFD solver.As a more general goal,the study aims at providing the capabilities of modern numerical techniques for the complex fluid dynamic problems of HAWT.The main purpose is hence to maximize the physics of power extraction by wind turbines.This research demonstrates the potential of an incompressible Navier-Stokes CFD method for the aerodynamic power performance analysis of horizontal axis wind turbine.The National Renewable Energy Laboratory USA-NREL (Technical Report NREL/Cp-500-28589) had carried out an experimental work aimed at the real time performance prediction of horizontal axis wind turbine.In addition to a comparison between the results reported by NREL made and CFD simulations,comparisons are made for the local flow angle at several stations ahead of the wind turbine blades.The comparison has shown that fairly good predictions can be made for pressure distribution and torque.Subsequently, the wind-field effects on the blade aerodynamics,as well as the blade/tower interaction,were investigated.The selected case corresponded to a 12.5 m/s up-wind HAWT at zero degree of yaw angle and a rotational speed of 25 rpm.The results obtained suggest that the present can cope well with the flows encountered around wind turbines.The areodynamic performance of the turbine and the flow details near and off the turbine blades and tower can be analysed using theses results.The aerodynamic performance of airfoils differs from one another.The performance mainly depends on co-efficient of performnace,co-efficient of lift,co-efficient of drag, velocity of fluid and angle of attack.This study shows that the velocity is not constant for all angles of attack of different airfoils.The performance parameters are calculated analytically and are compared with the standardized performance tests.For different angles of ,the velocity stall is determined for the better performance of a system with respect to velocity.The research addresses the effect of surface roughness factor on the blade surface at various sections.The numerical results were found to be in agreement with the experimental data.A relative advantage of the theoretical aerofoil design method is that it allows many different concepts to be explored economically.Such efforts are generally impractical in wind tunnels because of time and money constraints.Thus, the need for a theoretical aerofoil design method is threefold:first for the design of aerofoil that fall outside the range of applicability of existing calalogs:second,for the design of aerofoil that more exactly match the requirements of the intended application:and third,for the economic exploration of many aerofoil concepts.From the results obtained for the different aerofoils,the velocity is not constant for all angles of attack.The results obtained for the aerofoil mainly depend on angle of attack and velocity.The vortex generator technique was meticulously studies with the formulation of the specification for the right angle shaped vortex generators-VG.The results were validated in accordance with the primary analysis phase.The results were found to be in good agreement with the power curve.The introduction of correct size VGs at appropriate locations over the blades of the selected HAWT was found to increase the power generation by about 4%
Resumo:
It has become clear over the last few years that many deterministic dynamical systems described by simple but nonlinear equations with only a few variables can behave in an irregular or random fashion. This phenomenon, commonly called deterministic chaos, is essentially due to the fact that we cannot deal with infinitely precise numbers. In these systems trajectories emerging from nearby initial conditions diverge exponentially as time evolves)and therefore)any small error in the initial measurement spreads with time considerably, leading to unpredictable and chaotic behaviour The thesis work is mainly centered on the asymptotic behaviour of nonlinear and nonintegrable dissipative dynamical systems. It is found that completely deterministic nonlinear differential equations describing such systems can exhibit random or chaotic behaviour. Theoretical studies on this chaotic behaviour can enhance our understanding of various phenomena such as turbulence, nonlinear electronic circuits, erratic behaviour of heart and brain, fundamental molecular reactions involving DNA, meteorological phenomena, fluctuations in the cost of materials and so on. Chaos is studied mainly under two different approaches - the nature of the onset of chaos and the statistical description of the chaotic state.
Resumo:
In this 1984 proof of the Bieberbach and Milin conjectures de Branges used a positivity result of special functions which follows from an identity about Jacobi polynomial sums thas was published by Askey and Gasper in 1976. The de Branges functions Tn/k(t) are defined as the solutions of a system of differential recurrence equations with suitably given initial values. The essential fact used in the proof of the Bieberbach and Milin conjectures is the statement Tn/k(t)<=0. In 1991 Weinstein presented another proof of the Bieberbach and Milin conjectures, also using a special function system Λn/k(t) which (by Todorov and Wilf) was realized to be directly connected with de Branges', Tn/k(t)=-kΛn/k(t), and the positivity results in both proofs Tn/k(t)<=0 are essentially the same. In this paper we study differential recurrence equations equivalent to de Branges' original ones and show that many solutions of these differential recurrence equations don't change sign so that the above inequality is not as surprising as expected. Furthermore, we present a multiparameterized hypergeometric family of solutions of the de Branges differential recurrence equations showing that solutions are not rare at all.
Resumo:
We performed ab initio calculations of many particle inclusive probabilities for the scattering system 16 MeV-S{^16+} on Ar. The solution of the time-dependent DIRAC-FOCK-SLATER-equation is achieved via a set of coupled-channel equations with energy eigenvalues and matrix elements which are given by static SCF molecular many electron calculations.
Resumo:
The time dependent Dirac equation which describes a heavy ion-atom collision system is solved via a set of coupled channel equations with energy eigenvalues and matrix elements which are given by a selfconsistent field many electron calculation. After a brief discussion of the theoretical approximations and the connection of the many particle with the one particle interpretation we discuss first results for the systems F{^8+} - Ne and F{^6+} - Ne. The resulting P(b) curves for the creation of a Ne K-hole are in good agreement with the experimental results.
Resumo:
The present dissertation is devoted to the construction of exact and approximate analytical solutions of the problem of light propagation in highly nonlinear media. It is demonstrated that for many experimental conditions, the problem can be studied under the geometrical optics approximation with a sufficient accuracy. Based on the renormalization group symmetry analysis, exact analytical solutions of the eikonal equations with a higher order refractive index are constructed. A new analytical approach to the construction of approximate solutions is suggested. Based on it, approximate solutions for various boundary conditions, nonlinear refractive indices and dimensions are constructed. Exact analytical expressions for the nonlinear self-focusing positions are deduced. On the basis of the obtained solutions a general rule for the single filament intensity is derived; it is demonstrated that the scaling law (the functional dependence of the self-focusing position on the peak beam intensity) is defined by a form of the nonlinear refractive index but not the beam shape at the boundary. Comparisons of the obtained solutions with results of experiments and numerical simulations are discussed.
Resumo:
Using the functional approach, we state and prove a characterization theorem for classical orthogonal polynomials on non-uniform lattices (quadratic lattices of a discrete or a q-discrete variable) including the Askey-Wilson polynomials. This theorem proves the equivalence between seven characterization properties, namely the Pearson equation for the linear functional, the second-order divided-difference equation, the orthogonality of the derivatives, the Rodrigues formula, two types of structure relations,and the Riccati equation for the formal Stieltjes function.
Resumo:
The discontinuities in the solutions of systems of conservation laws are widely considered as one of the difficulties in numerical simulation. A numerical method is proposed for solving these partial differential equations with discontinuities in the solution. The method is able to track these sharp discontinuities or interfaces while still fully maintain the conservation property. The motion of the front is obtained by solving a Riemann problem based on the state values at its both sides which are reconstructed by using weighted essentially non oscillatory (WENO) scheme. The propagation of the front is coupled with the evaluation of "dynamic" numerical fluxes. Some numerical tests in 1D and preliminary results in 2D are presented.
Resumo:
Exercises and solutions in PDF
Resumo:
Exercises and solutions in LaTex
Resumo:
El inadecuado aporte nutricional en los pacientes con enfermedades criticas, ha llevado al desarrollo de complicaciones que incrementan la mortalidad y los costos de la atención en salud. Muchos factores están involucrados en el consumo de los nutrientes por el organismo, como: los traslados, las intervenciones quirúrgicas, el uso de vasopresores, la ventilación mecánica, entre otros. Si se presenta imprecisión en la de-terminación del gasto energético, puede conllevar a un sobre aporte alimenticio en el paciente el cual puede afectar la evolución y pronosti-co del individuo. Es de conocimiento universal que los costos en salud cada día se in-crementan, en especial cuando se presenta requerimiento del manejo de un paciente en la unidad de cuidados intensivos. Para predecir el gasto energético basal de los paciente en las UCI se cuentan con herramientas de evaluación sencillas, de fácil uso y económicas, como la ecuación de Harris-Benedict, o herramientas complejas y de difícil manejo como la Calorimetría Indirecta. El incremento en la demanda de servicios con mayor tecnología en el tratamiento de los pacientes, enfrenta al personal de salud para ser más crítico en el uso de la nueva tecnología, por tal motivo, se evaluó la presencia de correlación entre las ecuaciones de Harris-Benedict y Calorimetría Indirecta, encontrando que se presenta una buena correlación entre las ecuaciones, con un valor de Pearson de 0,700 y una p = 0.002. Por lo que se puede concluir que las ecuaciones pueden ser utilizadas para estimar el gasto energético basal de los pacientes en la UCI.
Resumo:
Objetivo: determinar la frecuencia de las diferentes alteraciones respiratorias durante el sueño (ARS) e hipertensión pulmonar (HTP) y establecer la saturación de oxígeno (SpO2) en vigilia, sueño y durante los eventos en niños con Síndrome Down (SD) a la altura de Bogotá (2640m) de acuerdo a grupos de edad e IMC. Métodos: estudio descriptivo de corte transversal, se incluyeron todos los niños con SD con sospecha de ARS remitidos a polisonograma (PSG) de octubre de 2011 a enero de 2013 a la Fundación Neumológica Colombina (FNC). Se dividieron en 3 grupos: apnea obstructiva, apnea obstructiva y central, sin apneas. Resultados: 74 niños, el 36,5% mujeres, edad media 4 años. 47,3% presento apnea obstructiva, más frecuente en >2 años, 35,1% apnea obstructiva y central, más frecuente en < 2 años y 17,6 % sin apnea. SpO2 promedio en apnea obstructiva 84,63%, apnea obstructiva y central: 81,8% y sin apnea: 86,85% (p 0,058). 23% presento obesidad, 16% con apnea obstructiva. 53 pacientes tenían ecocardiograma: 28% HTP, 53,3% tuvo apnea obstructiva y 26,7 apnea obstructiva y central, no diferencias significativas. SpO2 promedio en HTP 88,3% vigilia, 86,2% sueño REM, 85,7 % sueño no REM, no diferencia significativa comparada con pacientes sin HTP. Conclusiones: Las ARS son frecuentes en los niños con SD, La desaturación está presente en los niños con SD independiente del tipo de apnea. A todos los niños SD se les debe practicar un PSG en el primer año de vida.
Resumo:
El objetivo de este documento es recopilar algunos resultados clasicos sobre existencia y unicidad ´ de soluciones de ecuaciones diferenciales estocasticas (EDEs) con condici ´ on final (en ingl ´ es´ Backward stochastic differential equations) con particular enfasis en el caso de coeficientes mon ´ otonos, y su cone- ´ xion con soluciones de viscosidad de sistemas de ecuaciones diferenciales parciales (EDPs) parab ´ olicas ´ y el´ıpticas semilineales de segundo orden.
Resumo:
Many modelling studies examine the impacts of climate change on crop yield, but few explore either the underlying bio-physical processes, or the uncertainty inherent in the parameterisation of crop growth and development. We used a perturbed-parameter crop modelling method together with a regional climate model (PRECIS) driven by the 2071-2100 SRES A2 emissions scenario in order to examine processes and uncertainties in yield simulation. Crop simulations used the groundnut (i.e. peanut; Arachis hypogaea L.) version of the General Large-Area Model for annual crops (GLAM). Two sets of GLAM simulations were carried out: control simulations and fixed-duration simulations, where the impact of mean temperature on crop development rate was removed. Model results were compared to sensitivity tests using two other crop models of differing levels of complexity: CROPGRO, and the groundnut model of Hammer et al. [Hammer, G.L., Sinclair, T.R., Boote, K.J., Wright, G.C., Meinke, H., and Bell, M.J., 1995, A peanut simulation model: I. Model development and testing. Agron. J. 87, 1085-1093]. GLAM simulations were particularly sensitive to two processes. First, elevated vapour pressure deficit (VPD) consistently reduced yield. The same result was seen in some simulations using both other crop models. Second, GLAM crop duration was longer, and yield greater, when the optimal temperature for the rate of development was exceeded. Yield increases were also seen in one other crop model. Overall, the models differed in their response to super-optimal temperatures, and that difference increased with mean temperature; percentage changes in yield between current and future climates were as diverse as -50% and over +30% for the same input data. The first process has been observed in many crop experiments, whilst the second has not. Thus, we conclude that there is a need for: (i) more process-based modelling studies of the impact of VPD on assimilation, and (ii) more experimental studies at super-optimal temperatures. Using the GLAM results, central values and uncertainty ranges were projected for mean 2071-2100 crop yields in India. In the fixed-duration simulations, ensemble mean yields mostly rose by 10-30%. The full ensemble range was greater than this mean change (20-60% over most of India). In the control simulations, yield stimulation by elevated CO2 was more than offset by other processes-principally accelerated crop development rates at elevated, but sub-optimal, mean temperatures. Hence, the quantification of uncertainty can facilitate relatively robust indications of the likely sign of crop yield changes in future climates. (C) 2007 Elsevier B.V. All rights reserved.