987 resultados para Dem gross error detection
Resumo:
A sensitive and reproducible solid-phase extraction (SPE) method for the quantification of oxycodone in human plasma was developed. Varian Certify SPE cartridges containing both C-8 and benzoic acid functional groups were the most suitable for the extraction of oxycodone and codeine (internal standard), with consistently high (greater than or equal to 80%) and reproducible recoveries. The elution mobile phase consisted of 1.2 ml of butyl chloride-isopropanol (80:20, v/v) containing 2% ammonia. The quantification limit for oxycodone was 5.3 pmol on-column. Within-day and inter-day coefficients of variation were 1.2% and 6.8% respectively for 284 nM oxycodone and 9.5% and 6.2% respectively for 28.4 nM oxycodone using 0.5-ml plasma aliquots. (C) 1998 Elsevier Science BN. All rights reserved.
Resumo:
A sensitive, specific polymerase chain reaction-based assay was developed for the detection of the causal agent of ratoon stunting disease of sugarcane, Clavibacter xyli subsp. xyli. This assay uses oligonucleotide primers derived from the internal transcribed spacer region between the 16S and 23S rRNA genes of the bacterial rRNA operon. The assay is specific for C. xyli subsp. xyli and does not produce an amplification product from the template of the closely related bacterium C. xyli subsp. cynodontis, nor from other bacterial species. The assay was successfully applied to the detection of C. xyli subsp. xyli in fibrovascular fluid extracted from sugarcane and was sensitive to approximately 22 cells per PCR assay. A multiplex PCR test was also developed which identified and differentiated C. xyli subsp. xyli and C. xyli subsp. cynodontis in a single PCR assay.
Resumo:
Although morphine-6-glucuronide (M6G) has been shown to be analgesically active, the relative involvement of spinal and supraspinal structures in mediating M6G's pain-relieving effects following central and systemic administration to rats is unclear. As the tail flick and hotplate latency tests are reported to quantify antinociception mediated primarily by spinal and supraspinal mechanisms respectively, these methods were used to determine the comparative apparent levels of antinociception (expressed as percentage maximum possible effect, % MPE) achieved after M6G or morphine administration. Following i.v. or i.p. M6G (1.9-5.4 mu mol) dosing or i.p. morphine (10 mu mol) dosing, high levels of antinociception (>50% MPE) were achieved using the tail flick test whereas base-line levels of antinociception were observed 30 sec later in the same rats using the hotplate test. By contrast, antinociception evoked by i.v. morphine (10 mu mol) exceeded 50% MPE using both the hotplate and tail flick tests although the apparent potency was approximately 2.5 times greater using the tail flick test. After i.c.v. dosing, M6G (0.22-3.3 nmol) was significantly (P < .05) more potent when assessed using the tail flick compared with the hotplate test. Taken together, these data strongly indicate that following central and systemic administration, M6G's antinociceptive effects are mediated primarily by spinal structures whereas both spinal and supraspinal mechanisms contribute to systemic morphine's antinociceptive effects.
Resumo:
Immunolabeling is commonly used to localize antigens within frozen or paraffin tissue sections. We modified existing immunolabeling techniques to allow the detection of three antigens simultaneously within the one tissue section. The approach relies on the use of three monoclonal antibodies in sequential immunoperoxidase staining steps, each with colored substrates, resulting in the deposition of black, brown, and rose stains. The method is rapid and does not require novel techniques or materials. In this report, we demonstrate the colocalization of mast cell tryptase, neurofilament protein, and CD31 (platelet-endothelial cell adhesion molecule) or laminin in normal human skin and normal buccal mucosa, as an illustration of the power and simplicity of the multiple antigen localization technique.
Resumo:
PCR-based cancer diagnosis requires detection of rare mutations in k-ras, p53 or other genes. The assumption has been that mutant and wild-type sequences amplify with near equal efficiency, so that they are eventually present in proportions representative of the starting material. Work factor IX suggests that this assumption is invalid for one case of near-sequence identity To test the generality of this phenomenon and its relevance to cancer diagnosis, primers distant from point mutations in p53 and k-ras were used to amplify, wild-type and mutant sequences from these genes. A substantial bias against PCR amplification of mutants was observed for two regions of the p53 gene and one region of k-ras. For kras and p53, bias was observed when the wild-type and mutant sequences were amplified separately or when mixed in equal proportions before PCR. Bias was present with proofreading and non-proofreading polymerases. Mutant and wild-type segments of the factor V cystic fibrosis transmembrane conductance regulator and prothrombin genes were amplified and did not exhibit PCR bias. Therefore, the assumption of equal PCR efficiency for point mutant and wild-type sequences is invalid in several systems. Quantitative or diagnostic PCR will require validation for each locus, and enrichment strategies may be needed to optimize detection of mutants.
Resumo:
The gold surface of a quartz crystal microbalance was modified by the attachment of silica particles derivatised with N-[(3-trimethoxysilyl)propyl] ethylenediaminetriacetic acid. The device was employed to study the kinetics of the interaction of aqueous solutions of lead(II) nitrate and silver(I) nitrate with the surface and for the selective separation of the metal ions.
Resumo:
We wish to report the detection of dimethyl sulfone (methylsulfonylmethane, C2H6O2S) in the brain of a normal 62-year-old male using in vivo proton magnetic resonance spectroscopy. The presence of this exogenous metabolite resulted from ingestion of a dietary supplement containing dimethyl sulfone. The concentration of this compound in the brain was measured to be 2.4 mmol, with a washout half life of approximately 7.5 days. The in vivo T-1 and T-2 relaxation times of dimethyl sulfone were measured to be 2180 ms and 385 ms, respectively. The concentration of major brain metabolites, namely N-acetylaspartate, total Creatine and Choline, and myo-Inositol were within normal limits. (C) 2000 Elsevier Science Inc. All rights reserved.
Resumo:
We give an asymptotic analytic solution for the generic atom-laser system with gain in a D-dimensional trap, and show that this has a non-Thomas-Fermi behavior. The effect is due to Bose-enhanced condensate growth, which creates a local-density maximum and a corresponding outward momentum component. In addition, the solution predicts amplified center-of-mass oscillations, leading to enhanced center-of-mass temperature.
Resumo:
We investigate the utility of nonclassical states of simple harmonic oscillators, particularly a superposition of coherent states, for sensitive force detection. We find that like squeezed states, a superposition of coherent states allows displacement measurements at the Heisenberg limit. Entangling many superpositions of coherent states offers a significant advantage over a single-mode superposition state with the same mean photon number.
Resumo:
We show that quantum feedback control can be used as a quantum-error-correction process for errors induced by a weak continuous measurement. In particular, when the error model is restricted to one, perfectly measured, error channel per physical qubit, quantum feedback can act to perfectly protect a stabilizer codespace. Using the stabilizer formalism we derive an explicit scheme, involving feedback and an additional constant Hamiltonian, to protect an (n-1)-qubit logical state encoded in n physical qubits. This works for both Poisson (jump) and white-noise (diffusion) measurement processes. Universal quantum computation is also possible in this scheme. As an example, we show that detected-spontaneous emission error correction with a driving Hamiltonian can greatly reduce the amount of redundancy required to protect a state from that which has been previously postulated [e.g., Alber , Phys. Rev. Lett. 86, 4402 (2001)].