844 resultados para Dalton


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new class of platinum-bipyridyl compounds has been synthesized by the dehydrohalogenative reaction of [4,4'-bis(tert-butyl)-2,2'-bipyridyl]platinum dichloride [PtCl2((t)Bu(2)bipy)] 1 with terminal alkynes HC=CR, in the presence of copper(I) iodide and diisopropylamine. The products [Pt(C=CR)(2)((t)Bu(2)bipy)] (R=C6H4NO2-p 2, C6H5 3, C6H4CH3-p 4 or SiMe3 5), have been characterised by spectroscopic and analytical methods, and a single crystal molecular structure determination has been carried out on 4. Extended Huckel molecular orbital calculations have also been carried out, and the results are used to help rationalise the voltammetric, EPR and spectroelectrochemical properties of the new compounds. These show that compounds 3, 4 and 5 undergo a one-electron bipyridyl based redox process, but that 2 has an unresolved two-electron process located on the nitro groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The new complexes [NEt3H][M(HL)(cod)] (M = Rh 1 or Ir 2; H3L = 2,6-dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid, erotic acid; cod = cycloocta-1,5-diene) have been prepared by the reaction between [M2Cl2(cod)(2)] and erotic acid in dichloromethane in the presence of Ag2O and NEt3. They crystallise as dichloromethane adducts 1 . CH2Cl2 and 2 . CH2Cl2 from dichloromethane-hexane solutions. These isomorphous structures contain doubly hydrogen-bonded dimers, with additional hydrogen bonding to NEt3H+ cations and bridging CH2Cl2 molecules to form tapes. The use of (NBu4OH)-O-n instead of NEt3 gave the related complex [NBu4n][Rh(HL)(cod)] 1' which has an innocent cation not capable of forming strong hydrogen bonds and in contrast to 1 exists as discrete doubly hydrogen-bonded dimers. Complex 1' cocrystallises with 2,6-diaminopyridine (dap) via complementary triple hydrogen bonds to give [NBu4n][Rh(HL)(cod)]. dap . CH2Cl2 3. Complex 3 exhibits an extended sheet structure of associated [2 + 2] units, with layers of NBu4n, cations separating the sheets. These structural data together with those reported previously for platinum orotate complexes suggest that the steric requirements of the other ligands co-ordinated to the metal are important in influencing their hydrogen-bonding abilities. The solvent of crystallisation, the hydrogen-bonding propensity of the coligand and the nature of the counter ion also determine the type of association in the solid state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Raman spectroelectrochemical and X-ray crystallographic studies have been made for the binuclear copper(I) complex, [(Ph(3)P)(2)Cu(dpq)Cu(PPh(3))(2)][BF4](2), where dpq is the bridging ligand 2,3-di(2-pyridyl)quinoxaline. The X-ray data show that the pyridine rings are twisted out of plane with respect to the quinoxaline ring which is itself non-planar. The UV/VIS spectra of the metal-to-ligand charge-transfer excited state and those of the electrochemically reduced complex are similar. The resonance-Raman spectrum of the latter species exhibits little change in the frequency of the pyridinylquinoxaline inter-ring C-C bond stretching mode, compared to the ground electronic state. This suggests minimum change in the inter-ring C-C bond order in the electrochemically or charge-transfer generated radical anion. Semiempirical molecular-orbital calculations on both the neutral dpq and radical anion show two near-degenerate lowest unoccupied orbitals in the neutral species. One is strongly bonding across the inter-ring C-C bond while the other is almost nun-bonding. The Raman data suggest that it is this latter orbital which is populated in the transient and electrochemical experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasmodium falciparum parasites are responsible for the major global disease malaria, which results in > 2 million deaths each year. With the rise of drug-resistant malarial parasites, novel drug targets and lead compounds are urgently required for the development of new therapeutic strategies. Here, we address this important problem by targeting the malarial neutral aminopeptidases that are involved in the terminal stages of hemoglobin digestion and essential for the provision of amino acids used for parasite growth and development within the erythrocyte. We characterize the structure and substrate specificity of one such aminopeptidase, PfA-M1, a validated drug target. The X-ray crystal structure of PfA-M1 alone and in complex with the generic inhibitor, bestatin, and a phosphinate dipeptide analogue with potent in vitro and in vivo antimalarial activity, hPheP[CH2] Phe, reveals features within the protease active site that are critical to its function as an aminopeptidase and can be exploited for drug development. These results set the groundwork for the development of antimalarial therapeutics that target the neutral aminopeptidases of the parasite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Helminth pathogens prepare a Th2 type immunological environment in their hosts to ensure their longevity. They achieve this by secreting molecules that not only actively drive type 2 responses but also suppress type 1 responses. Here, we show that the major cysteine proteases secreted from the helminth pathogens Fasciola hepatica (FheCL1) and Schistosoma mansoni (SmCB1) protect mice from the lethal effects of lipopolysaccharide by preventing the release of inflammatory mediators, nitric oxide, interleukin-6, tumor necrosis factor alpha, and interleukin-12, from macrophages. The proteases specifically block the MyD88-independent TRIF-dependent signaling pathway of Toll-like receptor (TLR) 4 and TLR3. Microscopical and flow cytometric studies, however, show that alteration of macrophage function by cysteine protease is not mediated by cleavage of components of the TLR4 complex on the cell surface but occurs by degradation of TLR3 within the endosome. This is the first study to describe a parasite molecule that degrades this receptor and pinpoints a novel mechanism by which helminth parasites modulate the innate immune responses of their hosts to suppress the development of Th1 responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current therapeutics and prophylactics for malaria are under severe challenge as a result of the rapid emergence of drug-resistant parasites. The human malaria parasite Plasmodium falciparum expresses two neutral aminopeptidases, PfA-M1 and PfA-M17, which function in regulating the intracellular pool of amino acids required for growth and development inside the red blood cell. These enzymes are essential for parasite viability and are validated therapeutic targets. We previously reported the x-ray crystal structure of the monomeric PfA-M1 and proposed a mechanism for substrate entry and free amino acid release from the active site. Here, we present the x-ray crystal structure of the hexameric leucine aminopeptidase, PfA-M17, alone and in complex with two inhibitors with antimalarial activity. The six active sites of the PfA-M17 hexamer are arranged in a disc-like fashion so that they are orientated inwards to form a central catalytic cavity; flexible loops that sit at each of the six entrances to the catalytic cavern function to regulate substrate access. In stark contrast to PfA-M1, PfA-M17 has a narrow and hydrophobic primary specificity pocket which accounts for its highly restricted substrate specificity. We also explicate the essential roles for the metal-binding centers in these enzymes (two in PfA-M17 and one in PfA-M1) in both substrate and drug binding. Our detailed understanding of the PfA-M1 and PfA- M17 active sites now permits a rational approach in the development of a unique class of two-target and/or combination antimalarial therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the last decade a significant number of studies have highlighted the central role of host antimicrobial (or defence) peptides in modulating the response of innate immune cells to pathogen-associated ligands. In humans, the most widely studied antimicrobial peptide is LL-37, a 37-residue peptide containing an amphipathic helix that is released via proteolytic cleavage of the precursor protein CAP18. Owing to its ability to protect against lethal endotoxaemia and clinically-relevant bacterial infections, LL-37 and its derivatives are seen as attractive candidates for anti-sepsis therapies. We have identified a novel family of molecules secreted by parasitic helminths (helminth defence molecules; HDMs) that exhibit similar biochemical and functional characteristics to human defence peptides, particularly CAP18. The HDM secreted by Fasciola hepatica (FhHDM-1) adopts a predominantly alpha-helical structure in solution. Processing of FhHDM-1 by F. hepatica cathepsin L1 releases a 34-residue C-terminal fragment containing a conserved amphipathic helix. This is analogous to the proteolytic processing of CAP18 to release LL-37, which modulates innate cell activation by classical toll-like receptor (TLR) ligands such as lipopolysaccharide (LPS). We show that full-length recombinant FhHDM-1 and a peptide analogue of the amphipathic C-terminus bind directly to LPS in a concentration-dependent manner, reducing its interaction with both LPS-binding protein (LBP) and the surface of macrophages. Furthermore, FhHDM-1 and the amphipathic C-terminal peptide protect mice against LPS-induced inflammation by significantly reducing the release of inflammatory mediators from macrophages. We propose that HDMs, by mimicking the function of host defence peptides, represent a novel family of innate cell modulators with therapeutic potential in anti-sepsis treatments and prevention of inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two stable nanofluids comprising of mixed valent copper(I,II) oxide clusters (<1 nm) suspended in 1-butyl-3-methylimidazolium acetate, [C(4)mim][OAc], and copper(II) oxide nanoparticles (<50 nm) suspended in trioctyl(dodecyl) phosphonium acetate, [P-88812][OAc], were synthesised in a facile one-pot reaction from solutions of copper(II) acetate hydrate in the corresponding ionic liquids. Formation of the nanostructures was studied using 13C NMR spectroscopy and differential scanning calorimetry (DSC). From a solution of Cu(OAc)2 in 1-ethyl-3-methylimidazolium acetate, [C2mim][OAc], crystals were obtained that revealed the structure of [C2mim][Cu3(OAc)5(OH)2(H2O)]center dot H2O, indicating the formation of copper hydroxo-clusters in the course of the reaction. Synthesised nanostructures were studied using transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Physical properties of the prepared IL-nanofluids were examined using IR and UV-VIS spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and densitometry. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of alkyl aryl sulfides were metabolised, using selected strains of the soil bacterium Pseudomonas putida containing either toluene dioxygenase (TDO) or naphthalene dioxygenase (NDO), to give chiral sulfoxides. Alkyl aryl sulfoxides 2a-2k, 4a-4j and 4l, having enantiomeric excess (ee) values of >90%, were obtained by use of the appropriate strain of P. putida (UV4 or NCIMB 8859), Enantiocomplimentarity was observed for the formation of sulfoxides 2a, 2b, 2d, 2j, 4a, 4b and 4d, with TDO-catalysed (UV4) oxidation favouring the (R) enantiomer and NDO-catalysed oxidation (NCIMB 8859) the (S) enantiomer. Evidence of involvement of the TDO enzyme was obtained using a recombinant strain of Escherichia coli (pKST 11), The marked degree of stereoselectivity appears to be mainly due to enzyme-catalysed asymmetric sulfoxidation, however the possibility of a minor contribution from kinetic resolution, in some cases, cannot be excluded.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Substituted chiral thiophene 1-oxides and their cycloadducts of variable enantiopurity have been isolated as products of dioxygenase-catalysed sulfoxidation of the corresponding thiophenes using intact cells of Pseudomonas putida; thermal racemization (Delta G(double dagger) = 25.1 kcal mol(-1)) of the enantiopure metabolite (1R)-2-methylbenzo[b]thiophene 1-oxide has been observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enzyme-catalysed kinetic resolution and asymmetric dihydroxylation routes to enantiopure cis-diol metabolites of arenes and benzocycloalkenes of either absolute configuration have been developed using appropriate strains of the bacterium Pseudomonas putida.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Selected strains of the bacterium Pseudomonas putida (previously shown to effect dioxygenase-catalysed asymmetric cis-dihydroxylation of alkenes) have been found to yield chiral sulfoxides from the corresponding sulfides with a strong preference for the (R)- or (S)-configurations but without evidence of sulfone formation; similar results obtained using an Escherichia coli clone (pKST11, containing the Tod C1 C2 B and A genes encoding toluene dioxygenase from P. putida NCIMB 11767) are again consistent with a stereoselective dioxygenase-catalysed sulfoxidation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2-Phosphanylethylcyclopentadienyl lithium compounds, Li[C5R'(4)(CH2)(2)PR2] (R = Et, R' = H or Me, R = Ph, R' = Me), have been prepared from the reaction of spirohydrocarbons C5R'(4)(C2H4) with LiPR2. C5Et4HSiMe2CH2PMe2, was prepared from reaction of Li[C5Et4] with Me2SiCl2 followed by Me2PCH2Li. The lithium salts were reacted with [RhCl(CO)2]2,[IrCl(CO)3] or [Co-2(CO)(8)] to give [M(C5R'(4)(CH2) 2PR2)(CO)] (M = Rh, R = Et, R' = H or Me, R= Ph, R' = Me; M = Ir or Co, R = Et, R' = Me), which have been fully characterised, in many cases crystallographically as monomers with coordination of the phosphorus atom and the cyclopentadienyl ring. The values of nu(CO) for these complexes are usually lower than those for the analogous complexes without the bridge between the cyclopentadienyl ring and the phosphine, the exception being [Rh(Cp'(CH2)(2)PEt2)(CO)] (Cp' = C5Me4), the most electron rich of the complexes. [Rh(C5Et4SiMe2CH2PMe2)(CO)] may be a dimer. [Co-2(CO)(8)] reacts with C5H5(CH2)(2)PEt2 or C5Et4HSiMe2CH2PMe2 (L) to give binuclear complexes of the form [Co-2(CO)(6)L-2] with almost linear PCoCoP skeletons. [Rh(Cp'(CH2)(2)PEt2)(CO)] and [Rh(Cp'(CH2)(2)PPh2)(CO)] are active for methanol carbonylation at 150 degrees C and 27 bar CO, with the rate using [Rh(Cp'(CH2)(2)PPh2)(CO)] (0.81 mol dm(-3) h(-1)) being higher than that for [RhI2(CO)(2)](-) (0.64 mol dm(-3) h(-1)). The most electron rich complex, [Rh(Cp'(CH2)(2)PEt2)(CO)] (0.38 mol dm(-3) h(-1)) gave a comparable rate to [Cp*Rh(PEt3)(CO)] (0.30 mol dm(-3) h(-1)), which was unstable towards oxidation of the phosphine. [Rh(Cp'(CH2)(2)PEt2)I-2], which is inactive for methanol carbonylation, was isolated after the methanol carbonylation reaction using [Rh(Cp'(CH2)(2)PEt2)(CO)].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malaria caused by several species of Plasmodium is major parasitic disease of humans, causing 1-3 million deaths worldwide annually. The widespread resistance of the human parasite to current drug therapies is of major concern making the identification of new drug targets urgent. While the parasite grows and multiplies inside the host erythrocyte it degrades the host cell hemoglobin and utilizes the released amino acids to synthesize its own proteins. The P. falciparum malarial M1 alanyl-aminopeptidase (PfA-M1) is an enzyme involved in the terminal stages of hemoglobin digestion and the generation of an amino acid pool within the parasite. The enzyme has been validated as a potential drug target since inhibitors of the enzyme block parasite growth in vitro and in vivo. In order to gain further understanding of this enzyme, molecular dynamics simulations using data from a recent crystal structure of PfA-M1 were performed. The results elucidate the pentahedral coordination of the catalytic Zn in these metallo-proteases and provide new insights into the roles of this cation and important active site residues in ligand binding and in the hydrolysis of the peptide bond. Based on the data, we propose a two-step catalytic mechanism, in which the conformation of the active site is altered between the Michaelis complex and the transition state. In addition, the simulations identify global changes in the protein in which conformational transitions in the catalytic domain are transmitted at the opening of the N-terminal 8 angstrom-long channel and at the opening of the 30 angstrom-long C-terminal internal chamber that facilitates entry of peptides to the active site and exit of released amino acids. The possible implications of these global changes with regard to enzyme function are discussed.