985 resultados para DIFFERENT MOLECULAR-WEIGHTS
Resumo:
Metarhizium anisopliae is used as a biopesticide for insects that damage agricultural plantations like sugar cane and forage plants. In a previous study the sensitization to this fungus of asthmatic patients coming from sugar cane areas was showed. The aims of this work were: to compare crude extracts obtained with Tris-HCl and Coca liquid from several growth phases of M. anisopliae concerning the total content of proteins and their electrophoretic analysis profile; to evaluate in vivo allergic sensitization in Balb/c mice and allergic patients from a sugar cane area, and to characterize the allergenic fractions in the sera of patients positive for the prick test by means of Western-blotting. The extract obtained with Coca liquid on the 16(th) day was the one that presented the greatest number of proteic fractions, including all those present in the other extracts. Twelve fractions were verified in this extract with approximate molecular weights from 94 to 14 kDa. The allergenicity of the extract obtained on the 16(th) day was proven by the production of IgE antibodies in Balb/c mice, with titres of 200. Prick tests carried out with the extract of the 16(th) day in 79 atopic individuals (from sugar cane area), 35 atopic individuals (from urban area) and 11 non- atopic individuals showed respective positivity of 29%, 9% and 0%. The allergenic characterization in vitro was performed by means of Western blotting, and the fractions that reacted with the positive individuals' sera were those of approximate molecular weights of 67 kDa (95%); 20 kDa (55%); 94 kDa (36%); 34 and 36 kDa (23%); 43 and 48 kDa (14%): 16 kDa (9%) and 54kDa (5%). It was concluded that the crude allergenic extract, obtained with Coca liquid from the 16(th) day growth of Metarhizium anisopliae, contains allergenic fractions and can be used in diagnostic screening tests.
Resumo:
The synthesis, characterization and ethylene polymerization behavior of a set of Tp'MCl3 complexes (4, M = Ti, Tp' HB(3-neopentyl-pyrazolyl)(3)(-) (Tp(NP)); 5, M = Ti, Tp'= HB(3-tert-butyl-pyrazolyl)(3)(-) (Tp(tBu)); 6, M = Ti, Tp' = HB(3-phenyl-pyrazolyl)(3)(-) (Tp(Ph)); 7, M = Zr, Tp' = HB(3-phenyl-pyrazolyl)(3)(-) (Tp(ph)); 8, M = Zr, Tp' = HB(3-tert-butyl-pyrazolyl)(3)(-) (Tp(tBu))) is described. Treatment of these tris(pyrazolyl)borate Group IV compounds with methylalumoxane (MAO) generates active catalysts for ethylene polymerization. For the polymerization reactions performed in toluene at 60 degreesC and 3 atm of ethylene pressure, the activities varied between 1.3 and 5.1 X 10(3) g of PE/mol[M](.)h. The highest activity is reached using more sterically open catalyst precursor 4. The viscosity-average molecular weights ((M-v) over bar) of the PE's produced with these catalyst precursors varying from 3.57 to 20.23 x 10(5) gmol(-1) with melting temperatures in the range of 127-134 degreesC. Further polymerization studies employing 7 varying Al/Zr molar ratio and temperature of polymerization showed that the activity as well as the polymer properties are dependent on these parameters. In that case, higher activity was attained at 60 degreesC. The viscosity-average molecular weights of the polyethylene's decreases with increasing AI/Zr molar ratio. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
To investigate the role of the N-terminal region in the lytic mechanism of the pore-forming toxin sticholysin II (St II), we studied the conformational and functional properties of peptides encompassing the first 30 residues of the protein. Peptides containing residues 1-30 (P1-30) and 11-30 (P11-30) were synthesized and their conformational properties were examined in aqueous solution as a function of peptide concentration, pH, ionic strength, and addition of the secondary structure-inducing solvent trifluoroethanol (TFE). CD spectra showed that increasing concentration, pH, and ionic strength led to aggregation of P1-30; as a consequence, the peptide acquired beta-sheet conformation. In contrast, P11-30 exhibited practically no conformational changes under the same conditions, remaining essentially structureless. Moreover, this peptide did not undergo aggregation. These differences clearly point to the modulating effect of the first 10 hydrophobic residues on the peptides aggregation and conformational properties. In TFE both the first ten hydrophobic peptides acquired alpha-helical conformation, albeit to a different extent, P11-30 displayed lower alpha-helical content. P1-30 presented a larger-fraction of residues in alpha-helical conformation in TFE than that found in St II's crystal structure for that portion of the protein. Since TFE mimics the membrane em,, such increase in helical content could also occur upon toxin binding to membranes and represent a step in the mechanism of pore formation. The peptides conformational properties correlated well with their functional behaviour. Thus, P1-30 exhibited much higher hemolytic activity than P11-30. In addition, P11-30 was able to block the toxin's hemolytic activity. The size of pores formed in red blood cells by P 1-30 was estimated by measuring the permeability PEGs of different molecular mass. The pore radius (0.95 +/- 0.01 nm) was very similar to that of the PEGs of different pore formed by the toxin. The results demonstrate that the synthetic peptide P1-30 is a good model of St 11 conformation and function and emphasize the contribution of the toxin's N-terminal region, and, in particular, the hydrophobic residues 1-10 to pore formation. (c) 2005 Wiley Periodicals, Inc.
Resumo:
A. suite of 10 different marine evaporitic oil samples from Sergipe-Alagoas Basin, Brazil was studied for its biomarker content, in particular its acidic constituents. The oils showed different molecular distributions and relative abundances of n-alkanoic, isoprenoid and hopanoic acids. The observed differences were assigned to the incorporation of immature organic matter in the oils and fractionation along the migration pathway. The diagenetic precursor functionality (alcohol/ether or acid) was proposed based on the comparison of the relative abundances of the neutral and acidic biomarkers (hopanoids, isoprenoids, alkyl-steranes, monoaromatic alkyl-steroids). In the acidic fraction, 3 series of steroid-alkanoic acids and monoaromatic steroid-alkanoic acids (steroid-methanoic, ethanoic and propanoic acids and monoaromatic steroid-methanoic, ethanoic and propanoic acids) were detected, while in the neutral fraction only 2 series of each corresponding class could be observed (methyl and ethyl-steranes and monoaromatic methyl and ethyl-steroids). These carbon shifts suggest that decarboxylation is an important process in the formation of the alkyrsteranes and monoaromatic alkyl-steroids, and we infer that carboxylic acids are the diagenetic precursors of these classes of compounds. When alcohol or ether are the diagenetic precursors (isoprenoids and hopanoids), no significant differences in the molecular distributions between neutral and acidic fractions were observed. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The composition of the essential oil from leaves of Cryptocarya mandioccana has been determined by chromatographic fractionation and GC-FID, GC-MS and C-13 NMR analyses, yielding the identification of 64 compounds with predominance of isomeric sesquiterpenes with molecular weights of 204. The main components of the oil obtained by hydrodistillation were beta-caryophyllene, spathulenol, caryophyllene oxide, delta-cadinene, germacrene D, benzaldehyde and bicyclogermacrene. However, the oil obtained by steam distillation contained higher levels of sesquiterpene hydrocarbons, with predominance of P-caryophyllene (C), germacrene D (G) and bicyclogermacrene (B), and was considered to be more representative of the composition of the oil in its natural state. The intraspecific chemical variability of the essential oil obtained by steam distillation was evaluated within populations of trees growing at three separate locations in the state of São Paulo, Brazil. Three distinct chemical groups could be characterised due to differences in the relative percentages of the three main sesquiterpenes from essential oil: CGB [relative contents of C (14-34%), G (5-28%), B (8-15%)], BCG [B (17-34%), C (9-24%), G (12-25%)] and GCB [G (22-42%), C (4-17%), B (7-15%)]. Individuals from groups CGB and BCG were found to be more frequent at south locations while group GCB is predominant in north location. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Gelation mechanisms of lithium-doped Siloxane-Poly(oxyethylene) (PEO) hybrids containing polymer of two different molecular weight (500 and 1900 g/mol) were investigated through the evolution of the electrical properties during the solgel transition. The results of electrical measurements, performed by in-situ complex impedance spectroscopy, were correlated with the coordination and the dynamical properties of the lithium ions during the process as shown by Li-7 NMR measurements. For both hybrids sols, a decrease of the conductivity is observed at the initial gelation stage, due to the existence of an inverted percolation process consisting of the progressive separation of solvent molecules containing conducting species in isolated islands during the solid network formation. An increase of conductivity occurs at more advanced stages of gelation and aging, attributed to the increasing connectivity between PEO chains promoted by the formation of crosslinks of siloxane particles at their extremities, favoring hopping motions of lithium ions along the chains.
Resumo:
The immobilization of soluble catalyst {Tp(Ms)}TiCl3 (Tp(Ms*)HB(3-mesityl-pyrazolyl)(2)(5-mesityl-pyrazolyl)(-)) on silica and MAO-modified silicas containing 4.0, 8.0 and 23.0 wt.% Al/SiO2 yields active supported catalysts for ethylene polymerization. Among the supported catalysts studied by XRF spectroscopy, higher titanium content was obtained using MAO-modified silica containing 8.0 wt.% Al/SiO2 as support. For the ethylene polymerization reactions carried out in hexane at 60degreesC using a combination of triisobutylaluminum (TiBA) and methylaluminoxane (MAO) (1:1), the activities varied between 24.4 and 113.5 kg of PE/mol [Ti] h. The highest activity is reached using MAO-modified silica containing 4.0 wt.% Al/SiO2 as support. The viscosity-average molecular weights ((M) over bar (v)) of the PE's produced with the supported catalysts varying from 1.44 to 9.94 x 10(5) g/mol with melting temperatures in the range of 125-140degreesC. The use of other Lewis acid cocatalysts, including TiBA, diethylaluminium chloride (DEAC), and trimethylaluminum (TMA) resulted also in the formation of active catalysts for ethylene polymerization. However, the activities are lower than that one using a combination of TiBA and MAO. The viscosity-average molecular weights (R,) of PE's are influenced by varying the cocatalysts as well as the Al/Ti molar ratio. The supported catalyst generated in situ under ethylene atmosphere is roughly four times more active than supported one containing 4.0 wt.% Al/SiO2. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Objective-To determine whether plasma protein concentrations were altered in ponies with alimentary laminitis.Animals-12 adult ponies.Procedure-Acute laminitis was induced in 6 ponies by oral administration of carbohydrate (85% corn starch, 15% wood flour); the other 6 ponies were used as controls. A physical examination was performed and blood samples were collected immediately before and 4, 8, 12, 24, and 28 hours after administration of carbohydrate. Plasma protein concentrations were determined by means of sodium dodecyl sulphate-polyacrylamide gel electrophoresis.Results-19 plasma proteins ranging from a molecular weight of 24,000 to a molecular weight of 350,000 were identified in all 12 ponies. Plasma concentrations of proteins with molecular weights of 350,000 (fibrinogen), 130,000 (ceruloplasmin), 118,000 (c-reactive protein), 67,000 (alpha(1)-antitrypsin I), 65,000 (alpha(1)-antitrypsin II), 50,000 (haptoglobulin), and 45,000 (acid glycoprotein) were significantly increased in ponies with laminitis, compared with concentrations in control ponies.Conclusion-Changes in plasma protein concentrations are detectable within 4 hours after the onset of alimentary laminitis in ponies.Clinical Relevance-Measurement of plasma protein concentrations may be useful in monitoring the progression of laminitis in ponies.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The photoluminescence features and the energy transfer processes of Nd3+-based siloxanepoly(oxyethylene) hybrids are reported. The host matrix of these materials, classed as di-ureasils, is formed by a siloxane backbone covalently bonded to polyether chains of two molecular weights by means of urea cross-links. The room-temperature photoluminescence spectra of these xerogels show a wide broad purple-blue-green band (350-570 nm), associated with the emitting centres of the di-ureasil host, and the typical near infrared emission of Nd3+ (700-1400 nm), assigned to the 4F3/2 → 4I9/2,11/2,13/2 transitions. Self-absorptions in the visible range, resonant with intra-4f3 transitions, indicate the existence of an energy conversion mechanism of visible di-ureasil emission into near infrared Nd3+ luminescence. The existence of energy transfer between the di-ureasil's emitting centres and the Nd3+ ions is demonstrated calculating the lifetimes of these emitting centres. The efficiency of that energy transfer changes both with the polymer molecular weight and the Nd3+ concentration.
Resumo:
The alkalophilic Bacillus circulans D1 was isolated from decayed wood. It produced high levels of extracellular cellulase-free xylanase. The enzyme was thermally stable up to 60°C, with an optimal hydrolysis temperature of 70°C. It was stable over a wide pH range (5.5-10.5), with an optimum pH at 5.5 and 80% of its activity at pH 9.0. This cellulase-free xylanase preparation was used to biobleach kraft pulp. Enzymatic treatment of kraft pulp decreased chlorine dioxide use by 23 and 37% to obtain the same kappa number (κ number) and brightness, respectively. Separation on Sephadex G-50 isolated three fractions with xylanase activity with distinct molecular weights.
Resumo:
A PCR-RFLP analysis of the restriction pattern in nuclear (RAG2) and mitochondrial (12S/16S) gene sequences of bat species from the Molossidae, Phyllostomidae, Vespertilionidae, and Emballonuridae families produced a large number of fragments: 107 for RAG2 and 155 for 12S/16S combined in 139 and 402 haplotypes, respectively. The values detected for gene variation were low for both sequences (0.13 for RAG2 and 0.15 for 12S/16S) and reflected their conservative feature, reinforced by high values of inter- and intraspecies genetic identity (70-100%). The species with a high gene divergence were variable in the analyses of RAG2 (Eumops perotis, Artibeus lituratus, and Carollia perspicillata) and of 12S/16S (Nyctinomops laticaudatus, C. perspicillata, and Cynomops abrasus), and furthermore, one of them, C. perspicillata, also showed the highest intraspecific variation. The species that exhibited the lowest variation for both genes was Molossus rufus. In the families, the highest variation was observed in the Molossidae and this can be attributed to variation exhibited by Eumops and Nyctinomops species. The variations observed were interpreted as a natural variability within the species and genus that exhibited a conserved pattern in the two gene sequences in different species and family analyzed. Our data reinforce the idea that the analyses of mitochondrial and nuclear genes contribute to our knowledge of the diversity of New World bats. The genetic variability found in different taxa suggests that an additional diversity, unnoticed by other methods, can be revealed with the use of different molecular strategies. ©FUNPEC-RP.
Resumo:
The lymphoma is the main hematopoietic tumor in dogs and it is characterized by the proliferation of cells from lymphoid tissue, histiocytes and its precursors. Animals with lymphoma often show changes in biochemical and hematological parameters such as non-regenerative normochromic normocytic anemia, hemolytic anemia, hypocalcaemia and monoclonal gammopathy. The development of tumor can cause alterations in serum concentrations of acute phase proteins (APPs), consequent of hepatocytes stimulus by cytokines of inflammatory action. This study aimed to quantify and qualify APPs in dogs with lymphoma, at diagnosis time and during the time of chemotherapy sessions. After syneresis, centrifugation and fractioning the serum samples of 10 healthy and 10 dogs with lymphomas, the proteins fractions were separated by polyacrilamide gel electrophoresis (SDS-PAGE) and its concentrations were determined by computer densitometry. Between 18 and 30 proteins were separated by eletrophoresis, with molecular weights ranging from 18 to 245 kDa (kilodaltons). The alpha-1-glicoprotein acid (AGP) and transferrin serum concentration showed significantly higher in dogs with lymphoma, when compared with healthy dogs at diagnosis. The alpha-1-antitripsin (AAT) serum concentrations showed significantly higher in healthy dogs, when compared with dogs with lymphoma at diagnosis. The dogs with lymphoma the albumin did not appear as negative APP. On the other hand, transferrin appeared as positive AAP at diagnosis time and during the chemotherapy sessions. Healthy dogs had AAT serum concentrations significantly higher when compared to dogs with lymphoma at diagnosis. So, in this trial, it is suggested that this protein has been shown as a negative APP in the dogs with lymphoma. These dogs presented significantly higher AGP serum concentrations, in relation to healthy dogs at diagnosis, evidencing this protein APP positive behavior in neoplasm.
Resumo:
Chitosan-DNA nanoparticles employed in gene therapy protocols consist of a neutralised, stoichiometric core and a shell of the excess of chitosan which stabilises the particles against further coagulation. At low ionic strength, these nanoparticles possess a high stability; however, as the ionic strength increases, it weakens the electrostatic repulsion which can play a decisive part in the formation of highly aggregated particles. In this study, new results about the effect of ionic strength on the colloidal stability of chitosan-DNA nanoparticles were obtained by studying the interaction between chitosans of increasing molecular weights (5, 10, 16, 29, 57 and 150 kDa) and calf thymus DNA. The physicochemical properties of polyplexes were investigated by means of dynamic light scattering, static fluorescence spectroscopy, optic microscopy, transmission electronic microscopy and gel electrophoresis. After subsequent addition of salt to the nanoparticles solution, secondary aggregation increased the size of the polyplexes. The nanoparticles stability decreased drastically at the ionic strengths 150 and 500 mM, which caused the corresponding decrease in the thickness of the stabilising shell. The morphologies of chitosan/DNA nanoparticles at those ionic strengths were a mixture of large spherical aggregates, toroids and rods. The results indicated that to obtain stable chitosan-DNA nanoparticles, besides molecular weight and N/P ratio, it is quite important to control the ionic strength of the solution. © 2013 Copyright Taylor and Francis Group, LLC.