940 resultados para Control algorithm


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research pursued the conceptualization and real-time verification of a system that allows a computer user to control the cursor of a computer interface without using his/her hands. The target user groups for this system are individuals who are unable to use their hands due to spinal dysfunction or other afflictions, and individuals who must use their hands for higher priority tasks while still requiring interaction with a computer. ^ The system receives two forms of input from the user: Electromyogram (EMG) signals from muscles in the face and point-of-gaze coordinates produced by an Eye Gaze Tracking (EGT) system. In order to produce reliable cursor control from the two forms of user input, the development of this EMG/EGT system addressed three key requirements: an algorithm was created to accurately translate EMG signals due to facial movements into cursor actions, a separate algorithm was created that recognized an eye gaze fixation and provided an estimate of the associated eye gaze position, and an information fusion protocol was devised to efficiently integrate the outputs of these algorithms. ^ Experiments were conducted to compare the performance of EMG/EGT cursor control to EGT-only control and mouse control. These experiments took the form of two different types of point-and-click trials. The data produced by these experiments were evaluated using statistical analysis, Fitts' Law analysis and target re-entry (TRE) analysis. ^ The experimental results revealed that though EMG/EGT control was slower than EGT-only and mouse control, it provided effective hands-free control of the cursor without a spatial accuracy limitation, and it also facilitated a reliable click operation. This combination of qualities is not possessed by either EGT-only or mouse control, making EMG/EGT cursor control a unique and practical alternative for a user's cursor control needs. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent years have witnessed increased development of small, autonomous fixed-wing Unmanned Aerial Vehicles (UAVs). In order to unlock widespread applicability of these platforms, they need to be capable of operating under a variety of environmental conditions. Due to their small size, low weight, and low speeds, they require the capability of coping with wind speeds that are approaching or even faster than the nominal airspeed. In this thesis, a nonlinear-geometric guidance strategy is presented, addressing this problem. More broadly, a methodology is proposed for the high-level control of non-holonomic unicycle-like vehicles in the presence of strong flowfields (e.g. winds, underwater currents) which may outreach the maximum vehicle speed. The proposed strategy guarantees convergence to a safe and stable vehicle configuration with respect to the flowfield, while preserving some tracking performance with respect to the target path. As an alternative approach, an algorithm based on Model Predictive Control (MPC) is developed, and a comparison between advantages and disadvantages of both approaches is drawn. Evaluations in simulations and a challenging real-world flight experiment in very windy conditions confirm the feasibility of the proposed guidance approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Particle filtering has proven to be an effective localization method for wheeled autonomous vehicles. For a given map, a sensor model, and observations, occasions arise where the vehicle could equally likely be in many locations of the map. Because particle filtering algorithms may generate low confidence pose estimates under these conditions, more robust localization strategies are required to produce reliable pose estimates. This becomes more critical if the state estimate is an integral part of system control. We investigate the use of particle filter estimation techniques on a hovercraft vehicle. The marginally stable dynamics of a hovercraft require reliable state estimates for proper stability and control. We use the Monte Carlo localization method, which implements a particle filter in a recursive state estimate algorithm. An H-infinity controller, designed to accommodate the latency inherent in our state estimation, provides stability and controllability to the hovercraft. In order to eliminate the low confidence estimates produced in certain environments, a multirobot system is designed to introduce mobile environment features. By tracking and controlling the secondary robot, we can position the mobile feature throughout the environment to ensure a high confidence estimate, thus maintaining stability in the system. A laser rangefinder is the sensor the hovercraft uses to track the secondary robot, observe the environment, and facilitate successful localization and stability in motion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract. Dendritic cells are antigen presenting cells that provide a vital link between the innate and adaptive immune system. Research into this family of cells has revealed that they perform the role of coordinating T-cell based immune responses, both reactive and for generating tolerance. We have derived an algorithm based on the functionality of these cells, and have used the signals and differentiation pathways to build a control mechanism for an artificial immune system. We present our algorithmic details in addition to some preliminary results, where the algorithm was applied for the purpose of anomaly detection. We hope that this algorithm will eventually become the key component within a large, distributed immune system, based on sound immunological concepts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dendritic cells are antigen presenting cells that provide a vital link between the innate and adaptive immune system, providing the initial detection of pathogenic invaders. Research into this family of cells has revealed that they perform information fusion which directs immune responses. We have derived a Dendritic Cell Algorithm based on the functionality of these cells, by modelling the biological signals and differentiation pathways to build a control mechanism for an artificial immune system. We present algorithmic details in addition to experimental results, when the algorithm was applied to anomaly detection for the detection of port scans. The results show the Dendritic Cell Algorithm is successful at detecting port scans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dendritic cells are antigen presenting cells that provide a vital link between the innate and adaptive immune system. Research into this family of cells has revealed that they perform the role of coordinating T-cell based immune responses, both reactive and for generating tolerance. We have derived an algorithm based on the functionality of these cells, and have used the signals and differentiation pathways to build a control mechanism for an artificial immune system. We present our algorithmic details in addition to some preliminary results, where the algorithm was applied for the purpose of anomaly detection. We hope that this algorithm will eventually become the key component within a large, distributed immune system, based on sound imnological concepts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract. Dendritic cells are antigen presenting cells that provide a vital link between the innate and adaptive immune system. Research into this family of cells has revealed that they perform the role of coordinating T-cell based immune responses, both reactive and for generating tolerance. We have derived an algorithm based on the functionality of these cells, and have used the signals and differentiation pathways to build a control mechanism for an artificial immune system. We present our algorithmic details in addition to some preliminary results, where the algorithm was applied for the purpose of anomaly detection. We hope that this algorithm will eventually become the key component within a large, distributed immune system, based on sound immunological concepts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The majority of research work carried out in the field of Operations-Research uses methods and algorithms to optimize the pick-up and delivery problem. Most studies aim to solve the vehicle routing problem, to accommodate optimum delivery orders, vehicles etc. This paper focuses on green logistics approach, where existing Public Transport infrastructure capability of a city is used for the delivery of small and medium sized packaged goods thus, helping improve the situation of urban congestion and greenhouse gas emissions reduction. It carried out a study to investigate the feasibility of the proposed multi-agent based simulation model, for efficiency of cost, time and energy consumption. Multimodal Dijkstra Shortest Path algorithm and Nested Monte Carlo Search have been employed for a two-phase algorithmic approach used for generation of time based cost matrix. The quality of the tour is dependent on the efficiency of the search algorithm implemented for plan generation and route planning. The results reveal a definite advantage of using Public Transportation over existing delivery approaches in terms of energy efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Robot-control designers have begun to exploit the properties of the human immune system in order to produce dynamic systems that can adapt to complex, varying, real-world tasks. Jerne’s idiotypic-network theory has proved the most popular artificial-immune-system (AIS) method for incorporation into behaviour-based robotics, since idiotypic selection produces highly adaptive responses. However, previous efforts have mostly focused on evolving the network connections and have often worked with a single, preengineered set of behaviours, limiting variability. This paper describes a method for encoding behaviours as a variable set of attributes, and shows that when the encoding is used with a genetic algorithm (GA), multiple sets of diverse behaviours can develop naturally and rapidly, providing much greater scope for flexible behaviour-selection. The algorithm is tested extensively with a simulated e-puck robot that navigates around a maze by tracking colour. Results show that highly successful behaviour sets can be generated within about 25 minutes, and that much greater diversity can be obtained when multiple autonomous populations are used, rather than a single one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

International audience

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the application of a Brain Emotional Learning (BEL) controller to improve the response of a SDOF structural system under an earthquake excitation using a magnetorheological (MR) damper. The main goal is to study the performance of a BEL based semi-active control system to generate the control signal for a MR damper. The proposed approach consists of a two controllers: a primary controller based on a BEL algorithm that determines the desired damping force from the system response and a secondary controller that modifies the input current to the MR damper to generate a reference damping force. A parametric model of the damper is used to predict the damping force based on the piston motion and also the current input. A Simulink model of the structural system is developed to analyze the effectiveness of the semi-active controller. Finally, the numerical results are presented and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper is to present new results on H-infinity control synthesis for time-delay linear systems. We extend the use of a finite order LTI system, called comparison system to H-infinity analysis and design. Differently from what can be viewed as a common feature of other control design methods available in the literature to date, the one presented here treats time-delay systems control design with classical numeric routines based on Riccati equations arisen from H-infinity theory. The proposed algorithm is simple, efficient and easy to implement. Some examples illustrating state and output feedback design are solved and discussed in order to put in evidence the most relevant characteristic of the theoretical results. Moreover, a practical application involving a 3-DOF networked control system is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reconfigurable platforms are a promising technology that offers an interesting trade-off between flexibility and performance, which many recent embedded system applications demand, especially in fields such as multimedia processing. These applications typically involve multiple ad-hoc tasks for hardware acceleration, which are usually represented using formalisms such as Data Flow Diagrams (DFDs), Data Flow Graphs (DFGs), Control and Data Flow Graphs (CDFGs) or Petri Nets. However, none of these models is able to capture at the same time the pipeline behavior between tasks (that therefore can coexist in order to minimize the application execution time), their communication patterns, and their data dependencies. This paper proves that the knowledge of all this information can be effectively exploited to reduce the resource requirements and the timing performance of modern reconfigurable systems, where a set of hardware accelerators is used to support the computation. For this purpose, this paper proposes a novel task representation model, named Temporal Constrained Data Flow Diagram (TCDFD), which includes all this information. This paper also presents a mapping-scheduling algorithm that is able to take advantage of the new TCDFD model. It aims at minimizing the dynamic reconfiguration overhead while meeting the communication requirements among the tasks. Experimental results show that the presented approach achieves up to 75% of resources saving and up to 89% of reconfiguration overhead reduction with respect to other state-of-the-art techniques for reconfigurable platforms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The horticultural sector has become an increasingly important sector of food production, for which greenhouse climate control plays a vital role in improving its sustainability. One of the methods to control the greenhouse climate is Model Predictive Control, which can be optimized through a branch and bound algorithm. The application of the algorithm in literature is examined and analyzed through small examples, and later extended to greenhouse climate simulation. A comparison is made of various alternative objective functions available in literature. Subsequently, a modidified version of the B&B algorithm is presented, which reduces the number of node evaluations required for optimization. Finally, three alternative algorithms are developed and compared to consider the optimization problem from a discrete to a continuous control space.