905 resultados para Computer Graphics Interattiva, Maya 3D, Unity 3D.
Resumo:
Interactive TV technology has been addressed in many previous works, but there is sparse research on the topic of interactive content broadcasting and how to support the production process. In this article, the interactive broadcasting process is broadly defined to include studio technology and digital TV applications at consumer set-top boxes. In particular, augmented reality studio technology employs smart-projectors as light sources and blends real scenes with interactive computer graphics that are controlled at end-user terminals. Moreover, TV producer-friendly multimedia authoring tools empower the development of novel TV formats. Finally, the support for user-contributed content raises the potential to revolutionize the hierarchical TV production process, by introducing the viewer as part of content delivery chain.
Resumo:
During decades Distance Transforms have proven to be useful for many image processing applications, and more recently, they have started to be used in computer graphics environments. The goal of this paper is to propose a new technique based on Distance Transforms for detecting mesh elements which are close to the objects' external contour (from a given point of view), and using this information for weighting the approximation error which will be tolerated during the mesh simplification process. The obtained results are evaluated in two ways: visually and using an objective metric that measures the geometrical difference between two polygonal meshes.
Resumo:
Television and movie images have been altered ever since it was technically possible. Nowadays embedding advertisements, or incorporating text and graphics in TV scenes, are common practice, but they can not be considered as integrated part of the scene. The introduction of new services for interactive augmented television is discussed in this paper. We analyse the main aspects related with the whole chain of augmented reality production. Interactivity is one of the most important added values of the digital television: This paper aims to break the model where all TV viewers receive the same final image. Thus, we introduce and discuss the new concept of interactive augmented television, i. e. real time composition of video and computer graphics - e.g. a real scene and freely selectable images or spatial rendered objects - edited and customized by the end user within the context of the user's set top box and TV receiver.
Resumo:
Three dimensional datasets representing scalar fields are frequently rendered using isosurfaces. For datasets arranged as a cubic lattice, the marching cubes algorithm is the most used isosurface extraction method. However, the marching cubes algorithm produces some ambiguities which have been solved using different approaches that normally imply a more complex process. One of them is to tessellate the cubes into tetrahedra, and by using a similar method (marching tetrahedra), to build the isosurface. The main drawback of other tessellations is that they do not produce the same isosurface topologies as those generated by improved marching cubes algorithms. We propose an adaptive tessellation that, being independent of the isovalue, preserves the topology. Moreover the tessellationallows the isosurface to evolve continuously when the isovalue is changed continuously.
Resumo:
Interactive ray tracing of non-trivial scenes is just becoming feasible on single graphics processing units (GPU). Recent work in this area focuses on building effective acceleration structures, which work well under the constraints of current GPUs. Most approaches are targeted at static scenes and only allow navigation in the virtual scene. So far support for dynamic scenes has not been considered for GPU implementations. We have developed a GPU-based ray tracing system for dynamic scenes consisting of a set of individual objects. Each object may independently move around, but its geometry and topology are static.
Resumo:
We propose a method that robustly combines color and feature buffers to denoise Monte Carlo renderings. On one hand, feature buffers, such as per pixel normals, textures, or depth, are effective in determining denoising filters because features are highly correlated with rendered images. Filters based solely on features, however, are prone to blurring image details that are not well represented by the features. On the other hand, color buffers represent all details, but they may be less effective to determine filters because they are contaminated by the noise that is supposed to be removed. We propose to obtain filters using a combination of color and feature buffers in an NL-means and cross-bilateral filtering framework. We determine a robust weighting of colors and features using a SURE-based error estimate. We show significant improvements in subjective and quantitative errors compared to the previous state-of-the-art. We also demonstrate adaptive sampling and space-time filtering for animations.
Resumo:
Perceptual learning is a training induced improvement in performance. Mechanisms underlying the perceptual learning of depth discrimination in dynamic random dot stereograms were examined by assessing stereothresholds as a function of decorrelation. The inflection point of the decorrelation function was defined as the level of decorrelation corresponding to 1.4 times the threshold when decorrelation is 0%. In general, stereothresholds increased with increasing decorrelation. Following training, stereothresholds and standard errors of measurement decreased systematically for all tested decorrelation values. Post training decorrelation functions were reduced by a multiplicative constant (approximately 5), exhibiting changes in stereothresholds without changes in the inflection points. Disparity energy model simulations indicate that a post-training reduction in neuronal noise can sufficiently account for the perceptual learning effects. In two subjects, learning effects were retained over a period of six months, which may have application for training stereo deficient subjects.
Resumo:
We present a novel stereo-to-multiview video conversion method for glasses-free multiview displays. Different from previous stereo-to-multiview approaches, our mapping algorithm utilizes the limited depth range of autostereoscopic displays optimally and strives to preserve the scene's artistic composition and perceived depth even under strong depth compression. We first present an investigation of how perceived image quality relates to spatial frequency and disparity. The outcome of this study is utilized in a two-step mapping algorithm, where we (i) compress the scene depth using a non-linear global function to the depth range of an autostereoscopic display and (ii) enhance the depth gradients of salient objects to restore the perceived depth and salient scene structure. Finally, an adapted image domain warping algorithm is proposed to generate the multiview output, which enables overall disparity range extension.