901 resultados para Combinatorial Veronesian
Resumo:
A multistream reactor for high-throughput examining the surface acidity by NH3-TPD method by application of multistream mass spectrometer screening (MSMSS) technique has been developed. This method allows for examining the surface acidity of 10 catalyst samples in about 6 h, which is an improvement over the traditional process. The demonstration of the feasibility of high-throughput TPD can be significant in convincing the hardened traditionalists in the heterogeneous catalysis community that, combinatorial methods indeed should have an important place in scientific catalyst research and development. The developed method could also be used for almost all the temperature-programmed analysis theoretically with careful designed multistream reactors. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Schiff base compounds refer to the branch of supra-molecules and can be used as sensing material in the construction of potentiometric ion selective electrodes (ISEs). This relatively modern field has been subject to extensive research in the period of 1999-2007 when more than 100 ISEs employing Schiff bases were constructed. The quantitative high-throughput detection of 29 cations and 7 anions has been demonstrated in various scientific branches, such as biomedicine, pharmacy, biochemistry, pharmacology, environmental chemistry, food technology, and agriculture. This review discusses Schiff base compounds and their applications in the design and development of ion selective sensors and microsensors.
Resumo:
A faccile and efficient one-pot synthesis of highly substituted thiophenes has been developed and employed for the preparation of a small focused library. Treatment of 1,3-dicarbonyl compounds 1 with CS2 in the presence of K2CO3 in DMF at room temperature, followed by stepwise addition of alkyl bromides 2 and methylene active bromides 3, provided via intramolecular cyclization 2,3,4,5-tetrasubstituted thiophenes 4 in yields of 77-94%. This protocol, combining construction and modification of the thiophene ring, increases the structural diversity of final products from readily available materials. A mechanism for the one-pot synthesis of thiophenes of type 4 has been proposed. A small focused library of thiophenes is prepared using the sequential addition of reagents to achieve unique substitution in the 2 and 5 position of the thiophene ring
Resumo:
In vitro a-glucosidase inhibition assays and ultrafiltration liquid chromatography with photodiode array detection coupled to electrospray ionization tandem mass spectrometry (ultrafiltration LC-DAD-ESI-MSn) were combined to screen a-glucosidase inhibitors from hawthorn leaf flavonoids extract (HLFE). As a result, four compounds were identified as alpha-glucosidase inhibitors in the HLFE, and their structures were confirmed to be quercetin-3-O-rha-(1-4)-glc-rha and C-glycosylflavones (vitexin-2 ''-O-glucoside, vitexin-2 ''-O-rhamnoside and vitexin) by high-resolution sustained off resonance irradiation collision-induced dissociation (SORI-CID) data obtained by Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS).
Resumo:
By using a combinatorial screening method based on the self-consistent field theory (SCFT) for polymer systems, the micro-phase morphologies of the H-shaped (AC)B(CA) ternary block copolymer system are studied in three-dimensional (3D) space. By systematically varying the volume fractions of the components A, B, and C, six triangle phase diagrams of this H-shaped (AC)B(CA) ternary block copolymer system with equal interaction energies among the three components are constructed from the weaker segregation regime to the strong segregation regime, In this study, thirteen 3D micro-phase morphologies for this H-shaped ternary block copolymer system are identified to be stable and seven 3D microphase morphologies are found to be metastable.
Resumo:
We study the kinetics of the biomolecular binding process at the interface using energy landscape theory. The global kinetic connectivity case is considered for a downhill funneled energy landscape. By solving the kinetic master equation, the kinetic time for binding is obtained and shown to have a U-shape curve-dependence on the temperature. The kinetic minimum of the binding time monotonically decreases when the ratio of the underlying energy gap between native state and average non-native states versus the roughness or the fluctuations of the landscape increases. At intermediate temperatures,fluctuations measured by the higher moments of the binding time lead to non-Poissonian, non-exponential kinetics. At both high and very low temperatures, the kinetics is nearly Poissonian and exponential.
Resumo:
Biomolecular recognition often involves large conformational changes, sometimes even local unfolding. The identification of kinetic pathways has become a central issue in understanding the nature of binding. A new approach is proposed here to study the dynamics of this binding-folding process through the establishment of a path-integral framework on the underlying energy landscape. The dominant kinetic paths of binding and folding can be determined and quantified. The significant coupling between the binding and folding of biomolecules often exists in many important cellular processes. In this case, the corresponding kinetic paths of binding are shown to be intimately correlated with those of folding and the dynamics becomes quite cooperative. This implies that binding and folding happen concurrently. When the coupling between binding and folding is weak (strong), the kinetic process usually starts with significant folding (binding) first, with the binding (folding) later proceeding to the end. The kinetic rate can be obtained through the contributions from the dominant paths. The rate is shown to have a bell-shaped dependence on temperature in the concentration-saturated regime consistent with experiment. The changes of the kinetics that occur upon changing the parameters of the underlying binding-folding energy landscape are studied.
Resumo:
By using a combinatorial screening method based on the self-consistent field theory, we investigate the equilibrium morphologies of linear ABCBA and H-shaped (AB)(2)C(BA)(2) block copolymers in two dimensions. The triangle phase diagrams of both block copolymers are constructed by systematically varying the volume fractions of blocks A, B, and C. In this study, the interaction energies between species A, B, and C are set to be equal. Four different equilibrium morphologies are identified, i.e., the lamellar phase (LAM), the hexagonal lattice phase (HEX), the core-shell hexagonal lattice phase (CSH), and the two interpenetrating tetragonal lattice phase (TET2). For the linear ABCBA block copolymer, the reflection symmetry is observed in the phase diagram except for some special grid points, and most of grid points are occupied by LAM morphology. However, for the H-shaped (AB)(2)C(BA)(2) block copolymer, most of the grid points in the triangle phase diagram are occupied by CSH morphology, which is ascribed to the different chain architectures of the two block copolymers. These results may help in the design of block copolymers with different microstructures.
Resumo:
By using a combinatorial screening method based on the self-consistent field theory (SCFT) for polymers, we have investigated the morphology of H-shaped ABC block copolymers (A(2)BC(2)) and compared them with those of the linear ABC block copolymers. By changing the ratios of the volume fractions of two A arms and two C arms, one can obtain block copolymers with different architectures ranging from linear block copolymer to H-shaped block copolymer. By systematically varying the volume fractions of block A, B, and C, the triangle phase diagrams of the H-shaped ABC block copolymer with equal interactions among the three species are constructed. In this study, we find four different morphologies ( lamellar phase ( LAM), hexagonal lattice phase ( HEX), core-shell hexagonal lattice phase (CSH), and two interpenetrating tetragonal lattice (TET2)). Furthermore, the order-order transitions driven by architectural change are discussed.
Resumo:
A uniform nanolayer of europium-doped Gd2O3 was coated on the surface of preformed submicron silica spheres by a Pechini sol-gel process. The resulted SiO2@Gd2O3:Eu3+ core-shell structured phosphors were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra as well as kinetic decays. The XRD results show that the Gd2O3:Eu3+ layers start to crystallize on the SiO2 spheres after annealing at 400 degrees C and the crystallinity increases with raising the annealing temperature. The core-shell phosphors possess perfect spherical shape with narrow size distribution (average size: 640 nm) and non-agglomeration. The thickness of the Gd2O3:Eu3+ shells on the SiO2 cores can be adjusted by changing the deposition cycles (70 nm for three deposition cycles). Under short UV excitation, the obtained SiO2@Gd2O3:Eu3+ particles show a strong red emission with D-5(0)-F-7(2) (610 nm) of Eu3+ as the most prominent group.The PL intensity of Eu3+ increases with increasing the annealing temperature and the number of coating cycles.
Resumo:
The present calculations were performed on the basis of the Sanchez-Lacombe lattice fluid theory and the new combinatorial rules for block copolymer according to the experimental results on the pressure-induced compatibility in poly(ethylene oxide) (PEO) and poly(ethylene oxide-b-dimethylsiloxane) (P(EO-b-DMS)) mixtures with UCST behavior. The study on enthalpy, combinatorial entropy, vacancy entropy and Gibbs energy upon mixture shows that Sanchez-Lacombe fluid theory and the new combinatorial rules could describe the pressure-induced compatibility (PIC) of polymer mixtures with UCST behavior well.
Resumo:
Polymer blends of poly(methyl methacrylate) (PMMA) and poly(styrene-co-acrylonitrile) (SAN) with an acrylonitrile content of about 30 wt % were prepared by means of solution-casting and characterized by virtue of pressure-volume-temperature (PVT) dilatometry. The Sanchez-Lacombe (SL) lattice fluid theory was used to calculate the spinodals, the binodals, the Flory-Huggins (FH) interaction parameter, the enthalpy of the mixing, the volume change of the mixing, and the combinatorial and vacancy entropies of the mixing for the PMMA/SAN system. A new volume-combining rule was used to evaluate the close-packed volume per mer, upsilon*, of the PMMA/SAN blends. The calculated results showed that the new and the original volume-combining rules had a slight influence on the FH interaction parameter, the enthalpy of the mixing, and the combinatorial entropy of the mixing. Moreover, the spinodals and the binodals calculated with the SL theory by means of the new volume-combining rule could coincide with the measured data for the PMMA/SAN system with a lower critical solution temperature, whereas those obtained by means of the original one could not.
Resumo:
The important basis for the children to study chinese character is the Chinese character awareness, which means the understanding and extracting of the Chinese character combinatorial rule. The perceptual learning intrinsically is the direct perceive to the invariant rules. As the important mechanism to extract the abstract rule, the perceptual learning is the important mechanism of the development of the Chinese character awareness also. 4-6-year-old children's Chinese character awareness are tested by the degree of acceptance to the graphic words, inlaying words and pseudowords. The perceptual disintegration are tested by the perceptual learning experiment. Moreover, the development of the ability to finely-identify the Chinese character under the different level of attention condition is explored. The result suggests the quality to the development of the children's Chinese character awareness: The Chinese character awareness to 4-year-old children is in the rudiment stage, and it have different qualities as the change of the age. As the mechanism of the Chinese character awareness, the perceptual learning have an complex correlation to the awareness. The result indicates the following effects of the children perceptual disintegration: the level of the perceptual disintegration is transitive from three-dimension confusion to one-dimension falsity. It have correlation with the ability to finely-identify the Chinese character to a certain degree. The result also shows: the developmental specialties of the ability to finely-identify the Chinese character are different in the different age. The ability to finely-identify the Chinese character under the different level of attention condition have very similar processes.
Resumo:
A fundamental problem in artificial intelligence is obtaining coherent behavior in rule-based problem solving systems. A good quantitative measure of coherence is time behavior; a system that never, in retrospect, applied a rule needlessly is certainly coherent; a system suffering from combinatorial blowup is certainly behaving incoherently. This report describes a rule-based problem solving system for automatically writing and improving numerical computer programs from specifications. The specifications are in terms of "constraints" among inputs and outputs. The system has solved program synthesis problems involving systems of equations, determining that methods of successive approximation converge, transforming recursion to iteration, and manipulating power series (using differing organizations, control structures, and argument-passing techniques).