940 resultados para CONJUGATED LINOLEIC-ACID
Resumo:
No presente trabalho estudou-se a produção de ésteres etílicos de ácido graxo de Ricinus communis L. através da tranesterificação alcalina do óleo de mamona com etanol. Esta metodologia foi adotada para determinar as melhores condições para a produção de biodiesel a partir de óleo de mamona usando o mínimo de operações unitárias com benefícios do ponto de vista econômico e de produção de efluentes. Para a obtenção dos ésteres etílicos através do processo de transesterificação (etapa 1) utilizou-se como catalisador 1% de NaOH com etanol em uma razão molar de 6:1 seguido da adição de ácido sulfúrico. Após, a reação de esterificação (etapa 2) dos ácidos graxos contidos no biodiesel foi realizada visando reduzir o índice de acidez da amostra, ficando em torno de 2 mg de KOH/g. A quebra in situ dos sabões (provenientes da reação paralela de saponificação do triglicerídeo) pela adição de ácido sulfúrico ao meio reacional foi bem sucedida melhorando a separação dos FAEEs do glicerol. O processo em duas etapas transesterificação/esterificação apresentou boa conversão para os ésteres etílicos, diminuindo o índice de acidez e atingindo as especificações para glicerina total e livre. O biodiesel proveniente do óleo de mamona foi composto de 90,6% ácido ricinoléico (C18:1, OH), 3,2% ácido oléico (C18:1), 4,5% ácido linoléico (C18:2), 0,7% ácido esteárico (C18:0), 1,0% ácido palmítico (C16:0), triacilgliceróis (TGs, 0%), diacilgliceróis (DGs, 0,37%) monoacilgliceróis (MGs, 0,46%) e glicerol livre (0,25%) após o processo em duas etapas transesterificação/esterificação. O processo em duas etapas foi muito importante para determinar a integralidade da reação no rendimento do produto. Os resultados demonstram que o procedimento desenvolvido para a produção de FAEEs em escala de laboratório pode ser escalonado para uma planta piloto.
Resumo:
Os nanomateriais de carbono como o fulereno (C60) apresenta comportamentos bioquímicos distintos, podendo atuar como antioxidante ou pró-oxidante em diferentes sistemas biológicos. Outra evidência ao C60 refere-se a sua característica lipofilica, na qual oferece ação mais direta a diferentes tipos de membranas celulares. Do mesmo modo ácidos graxos poliinsaturados (AGPs) como o ômega-3 (DHA) e o ômega-6 (LA) são importantes para funções celulares da membrana, sendo considerados antioxidantes clássicos. Dessa forma este estudo avaliou em suspensões celulares de cérebro da carpa (Cyprinus carpio, Cyprinidae), o efeito de C60 após um pré-tratamento com DHA ou LA. Para tal avaliação os ensaios consistiram em um pré-tratamento com AGPs (48h) e após exposição a C60 (2h). Como resultados observamos que a viabilidade celular e a capacidade antioxidante total não apresentaram diferença (p> 0.05) entre todos os grupos. Em relação a valores de espécies ativas de oxigênio e dano lipídico foi observado redução nos seus valores nos grupos expostos ao C60 pré – tratados com AGPs (p<0.05). Em termos de cisteína, ocorre uma redução da sua concentração em todos os grupos expostos ao C60. Porém para glutationa a exposição ao C60 provoca um aumento de sua concentração nos grupo controle (sem AGPs) e no grupo pré – tratado com DHA. Dessa forma consideramos que o pré – tratamento com AGPs é benéfico às células, uma vez que um aumento nos níveis de glutationa e uma diminuição na concentração de espécies ativas de oxigênio e peroxidação lipídica foram observados nos grupos expostos ao C60. Sendo assim um bom estado nutritivo em termos da concentração de AGPs foi considerado benéfico na exposição ao fulereno.
Resumo:
A atividade antiproliferativa in vitro de uma série de amidas graxas sintéticas, em sete linhagens de células tumorais foi investigada. Baseado em GI50, TGI e LC50, os ensaios preliminares mostraram que a maior parte dos compostos mostrou atividade antiproliferativa moderada a boa contra as linhagem de células tumorais testadas, principalmente em células de glioma humano (U251) e câncer de ovário humano com fenótipo de resistentencia a múltiplos fármacos (NCI-ADR/RES). A amida (R,S)-3d, derivada do ácido ricinoleico, mostrou uma elevada seletividade com potência de inibição do crescimento e morte celular para a linhagem de células de glioma. Além disso, as amidas (S)-3c e (S)-3e, derivadas dos ácidos oleico e linoleico respectivamente, foram especificas para glioma e ovário com fenótipo de resistência a múltiplos fármacos com inibição potente do crescimento celular. Estes resultados aliados a um perfil de segurança relativo quando analisado o efeito sobre as linhagens celulares não–tumorais, apontam para que estes compostos sirvam como modelos para o desenvolvimento de candidatos a fármacos para o tratamento de câncer, incluindo cânceres com fenótipo de resistência a múltiplos fármacos.
Resumo:
Investigou-se o efeito da adição de C18:2n6, por meio da inclusão de óleo de milho em dietas com dois níveis de proteína bruta, sobre o processo de maturação de gametas de pintado, Pseudoplatystoma corruscans, mantidos em tanques-rede. Foram avaliados: taxa de sobrevivência, relação peso x comprimento, fator de condição (K) e índice gonadossomático (IGS). O experimento foi realizado entre março de 2004 e fevereiro de 2006, em 12 tanques-rede, distribuídos em seis viveiros-escavados de 600m² e densidade de estocagem de 20 peixes/tanque-rede. Utilizaram-se três tratamentos (T) com duas repetições/viveiro: T1 com 28% de PB; T2 com 28% de PB + 5% óleo de milho e T3 com 40% de PB. O crescimento foi ligeiramente mais alto nos peixes do T3. As taxas de sobrevivência foram acima de 77%. Pode-se inferir que as rações ofertadas não causaram alterações histomorfológicas durante o processo de maturação gonadal dessa espécie. O IGS e o K foram ligeiramente mais altos nos animais alimentados com a ração enriquecida com óleo de milho.
Resumo:
Freshwater fish are an important source of protein, but they also contain other highly nutritive components such as fats. Polyunsaturated fatty acids (PUFAs) are essential for normal growth, development and reproduction of vertebrates. The antioxidant role of vitamin E in cell membranes prevents fatty acid and cholesterol oxidation, thereby promoting PUFA and subcellular particle stabilization. The effects of vitamin E supplementation on the quality of Nile tilapia (Oreochromis niloticus) carcass were investigated. The experiments were carried out in an experimental laboratory over 106 d. After sex reversal, 400 early juvenile O. niloticus were tested in a completely randomized experiment with 5 treatments (4 repetitions each), consisting of vitamin E monophosphate supplementation at 0, 50, 100, 150 or 200 mg/kg of a base diet. Treatment diets contained equal amounts of protein and energy. Tilapias supplemented with vitamin E contained arachidonic acid (20:4 omega-6; AA) which participates in inflammatory response. Nile tilapia carcasses that received vitamin E at 100 and 150 mg/kg diet had improved carcass quality by increasing the PUFA:SFA ratio and had the highest levels of polyunsaturated fatty acids from the omega-3 (linolenic acid; 18:3 omega-3) and omega-6 (linoleic acid; 18:2 omega-6) series. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study is to evaluate the chemical composition and the antioxidant and antimicrobial activities of EOs of C. nepeta collected in two different seasons, spring (leaves) and autumn (leaves and flowers) and to understand the relationship between seasonality composition and these biological activities. EOs were extracted by hydrodistillation of aerial parts of the plants wild grown in Évora (Alentejo) and their chemical composition was evaluated by GC-FID and GC-MS. Antioxidant activity was determined by β -carotene/linoleic acid system, total reducing power assay and DPPH radical methods [1]. Antimicrobial activity was assessed against Gram-negative and Gram-positive clinical isolates and food spoilage fungi [2,3].
Resumo:
In the chemical composition of olive oil (Olea europaea L.) it is emphasized the massive presence of oleic acid (over 70%), monounsaturated fatty acid part of the family of omega 9, a 7-8% linoleic acid (omega 6) and a small presence (0.5-1%) of linolenic acid (omega 3). For its high content of monounsaturated fatty acids, olive oil is the most stable and therefore the most suitable for heating, compared to oils with a dominance of polyunsaturated fatty acids. Interest in vitamin E has increased in recent years, thanks to its high antioxidant power and its role against related diseases with age-related, visual, dermatological, cardiovascular disorders Alzheimer’s disease and more. Vegetable oils are a major source of vitamin E through diet (Sayago et al., 2007), especially with the variety of olives “Hojiblanca”. Thanks to unsaturated fatty acids cell oxidation can be prevented: this helps prevent many illness, and even premature aging. So far, the advantages acknowledged to olive oil are those of lowering cholesterol, preventing cardiovascular disease, diabetes and cancer. Among the most recent researches it is important to distinguish the studies carried out on their contribution to the prevention and treatment of breast cancer and Alzheimer’s disease. Researchers found that in addition to the benefi ts that give monounsaturated fats, in extra virgin olive oil, there is a substance called “oleocanthal”, which helps protect nerve cells damaged in Alzheimer’s disease. The importance of this discovery is enormous when one considers that only Alzheimer’s disease affects 30 million people around the world, with a different distribution depending on the type of oil in the diet (Olguín Cordero, 2012). The latest research endorses that oleocanthal works by destroying cancer cells without affecting the healthy ones, as it is stated in the Molecular and Cellular Oncology Journal. Studies carried out in different Spanish universities have concluded that thanks to the antioxidant power of olive oil, a disease such as Alzheimer can be prevented. In conclusion, we can say that the Mediterranean diet rich in extra virgin olive oil greatly infl uences on human health, reducing, delaying or even eliminating several diseases.
Resumo:
Abstract: The aim of this study is to characterize physical and chemically and determine the antioxidant capacity of pequi almond oils (PAO) extracted by handmade and by cold-pressing. Both oils showed good quality by acid, peroxide and thiobarbituric acid values. The fatty acid (FA) profile showed a significant presence of monounsaturated FA, mainly oleic acid (53.48 to 55.41%); saturated FA, such as palmitic acid (33.30 to 35.89 %); and polyunsaturated FA (PUFA), such as linoleic acid (5.85 to 7.23%). The total phenolic (TP) and carotenoid content ranged in concentration from 87.56 to 392.00 mg GAE/100 g and 36.03 to 262.40 mg/100 g, respectively. The tocopherol and phytosterol results indicated the predominant presence of α-tocopherol (52 to 67%) and stigmasterol (63 to 68 %). The antioxidant capacity of PAO as measured using the 2,2-diphenyl-1-picrylhydrazyl (DPPH?) method oscillated from 58.48 mg/mL to 76.46 mg/mL (IC50), from 10.61 to 40.46 µmol TE/g by the 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS?+) method, and from 113.93 to 280.85 µmol TE/100 g and 164.49 to 277.86 µmol TE/100 g, by the lipophilic and hydrophilic oxygen radical absorbance capacity (ORAC) methods, respectively. The oils presented a good oxidative and thermal stability by Rancimat method (IP of 7.33 a 15.91 h) and curves thermogravimetric and differential scanning calorimetry (To 337-363 °C and 159-184 °C, respectively). The results confirmed the presence of compounds that conferred antioxidant capacity and oxidative and thermal resistance for PAO made by handmade or cold-pressing, indicating that these oils can potentially be used for food and non-food applications.
Resumo:
Sunflower is one of the most important oilseed crops and produces a high-quality edible oil. Balance of fatty acids in standard sunflower oil shows preponderance of linoleic rather than oleic acid, and conditions during seed development, such as temperature, changes the oleic/linoleic ratio of the oil. This work aimed to evaluate the environmental effect on fatty acid profile in a group of standard and high oleic varieties and hybrids. Seeds were produced during regular season crop and during off-season crop featuring different temperatures from anthesis to maturity. Fatty acid composition was determined by gas chromatography. Levels of oleic acid, in standard oil genotypes, raised as the crop developed in warmer environment while levels of linoleic acid decreased, and the opposite was observed when the crop was grown under lower temperature. High oleic genotypes were less sensitive to environment switching and showed lower variation on fatty acid composition.
Resumo:
In this work, a colorimetric indicator for food oxidation based on the detection of hexanal in gas-phase, has been developed. In fact, in recent years, the food packaging industry has evolved towards new generation of packaging, like active and intelligent. According to literature (Pangloli P. et al. 2002), hexanal is the main product of a fatty acid oxidation: the linoleic acid. So, it was chosen to analyse two kinds of potato chips, fried in two different oils with high concentration of linoleic acid: olive oil and sunflower oil. Five different formulas were prepared and their colour change when exposed to hexanal in gas phase was evaluated. The formulas evaluations were first conducted on filter paper labels. The next step was to select the thickener to add to the formula, in order to coat a polypropylene film, more appropriate than the filter paper for a production at industrial scale. Three kinds of thickeners were tested: a cellulose derivative, an ethylene vinyl-alcohol and a polyvinyl alcohol. To obtain the final labels with the autoadhesive layer, the polypropylene film with the selected formula and thickener was coat with a water based adhesive. For both filter paper and polypropylene labels, with and without autoadhesive layer, the detection limit and the detection time were measured. For the selected formula on filter paper labels, the stability was evaluated, when conserved on the dark or on the light, in order to determine the storage time. Both potato chips samples, stocked at the same conditions, were analysed using an optimised Headspace-Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) method, in order to determine the concentration of volatilized hexanal. With the aim to establish if the hexanal can be considered as an indicator of the end of potato chips shelf life, sensory evaluation was conducted each day of HS-SPME-GC-MS analysis.
Resumo:
PURPOSE: G protein-coupled receptor agonists are being used as radiolabeled vectors for in vivo localization and therapy of tumors. Recently, somatostatin-based antagonists were shown to be superior to agonists. Here, we compare the new [111In/68Ga]-labeled bombesin-based antagonist RM1 with the agonist [111In]-AMBA for targeting the gastrin-releasing peptide receptor (GRPR). EXPERIMENTAL DESIGN: IC50, Kd values, and antagonist potency were determined using PC-3 and HEK-GRPR cells. Biodistribution and imaging studies were done in nude mice transplanted with the PC-3 tumor. The antagonist potency was assessed by evaluating the effects on calcium release and on receptor internalization monitored by immunofluorescence microscopy. RESULTS: The IC50 value of [(nat)In]-RM1 was 14 +/- 3.4 nmol/L. [(nat/111)In]-RM1 was found to bind to the GRPR with a Kd of 8.5 +/- 2.7 nmol/L compared with a Kd of 0.6 +/- 0.3 nmol/L of [111In]-AMBA. A higher maximum number of binding site value was observed for [111In]-RM1 (2.4 +/- 0.2 nmol/L) compared with [111In]-AMBA (0.7 +/- 0.1 nmol/L). [(nat)Lu]-AMBA is a potent agonist in the immunofluorescence-based internalization assay, whereas [(nat)In]-RM1 is inactive alone but efficiently antagonizes the bombesin effect. These data are confirmed by the calcium release assay. The pharmacokinetics showed a superiority of the radioantagonist with regard to the high tumor uptake (13.4 +/- 0.8% IA/g versus 3.69 +/- 0.75% IA/g at 4 hours after injection. as well as to all tumor-to-normal tissue ratios. CONCLUSION: Despite their relatively low GRPR affinity, the antagonists [111In/68Ga]-RM1 showed superior targeting properties compared with [111In]-AMBA. As found for somatostatin receptor-targeting radiopeptides, GRP-based radioantagonists seem to be superior to radioagonists for in vivo imaging and potentially also for targeted radiotherapy of GRPR-positive tumors.
Resumo:
Vegetable oils that contain fatty acids with conjugated double bonds, such as tung oil, are valuable drying agents in paints, varnishes, and inks. Although several reaction mechanisms have been proposed, little is known of the biosynthetic origin of conjugated double bonds in plant fatty acids. An expressed sequence tag (EST) approach was undertaken to characterize the enzymatic basis for the formation of the conjugated double bonds of α-eleostearic (18:3Δ9cis,11trans,13trans) and α-parinaric (18:4Δ9cis,11trans,13trans,15cis) acids. Approximately 3,000 ESTs were generated from cDNA libraries prepared from developing seeds of Momordica charantia and Impatiens balsamina, tissues that accumulate large amounts of α-eleostearic and α-parinaric acids, respectively. From ESTs of both species, a class of cDNAs encoding a diverged form of the Δ12-oleic acid desaturase was identified. Expression of full-length cDNAs for the Momordica (MomoFadX) and Impatiens (ImpFadX) enzymes in somatic soybean embryos resulted in the accumulation of α-eleostearic and α-parinaric acids, neither of which is present in untransformed soybean embryos. α-Eleostearic and α-parinaric acids together accounted for as much as 17% (wt/wt) of the total fatty acids of embryos expressing MomoFadX. These results demonstrate the ability to produce fatty acid components of high-value drying oils in transgenic plants. These findings also demonstrate a previously uncharacterized activity for Δ12-oleic acid desaturase-type enzymes that we have termed “conjugase.”
Resumo:
Current treatment strategies for the treatment of brain tumor have been hindered primarily by the presence of highly lipophilic insurmountable blood-brain barrier (BBB). The purpose of current research was to investigate the efficiency of engineered biocompatible polymeric nanoparticles (NPs) as drug delivery vehicle to bypass the BBB and enhance biopharmaceutical attributes of anti-metabolite methotrexate (MTX) encapsulated NPs. The NPs were prepared by solvent diffusion method using cationic bovine serum albumin (CBA), and characterized for physicochemical parameters such as particle size, polydispersity index, and zeta-potential; while the surface modification was confirmed by FTIR, and NMR spectroscopy. Developed NPs exhibited zestful relocation of FITC tagged NPs across BBB in albino rats. Further, hemolytic studies confirmed them to be non-toxic and biocompatible as compared to free MTX. In vitro cytotoxicity assay of our engineered NPs on HNGC1 tumor cells proved superior uptake in tumor cells; and elicited potent cytotoxic effect as compared to plain NPs and free MTX solution. The outcomes of the study evidently indicate the prospective of CBA conjugated poly (D,L-lactide-co-glycolide) (PLGA) NPs loaded with MTX in brain cancer bomber with amplified capability to circumvent BBB.