632 resultados para CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of several techniques applied to production processes oil is the artificial lift, using equipment in order to reduce the bottom hole pressure, providing a pressure differential, resulting in a flow increase. The choice of the artificial lift method depends on a detailed analysis of the some factors, such as initial costs of installation, maintenance, and the existing conditions in the producing field. The Electrical Submersible Pumping method (ESP) appears to be quite efficient when the objective is to produce high liquid flow rates in both onshore and offshore environments, in adverse conditions of temperature and in the presence of viscous fluids. By definition, ESP is a method of artificial lift in which a subsurface electric motor transforms electrical into mechanical energy to trigger a centrifugal pump of multiple stages, composed of a rotating impeller (rotor) and a stationary diffuser (stator). The pump converts the mechanical energy of the engine into kinetic energy in the form of velocity, which pushes the fluid to the surface. The objective of this work is to implement the optimization method of the flexible polyhedron, known as Modified Simplex Method (MSM) applied to the study of the influence of the modification of the input and output parameters of the centrifugal pump impeller in the channel of a system ESP. In the use of the optimization method by changing the angular parameters of the pump, the resultant data applied to the simulations allowed to obtain optimized values of the Head (lift height), lossless efficiency and the power with differentiated results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Camu-camu (Myrciaria dubia H.B.K. (McVaugh)) is a native Amazon fruit, recognized worldwide as one of the main natural sources of ascorbic acid. Due to its great acidity, this fruit is generally consumed after processing into juice or as ingredient in food preparations. As a co-product of the camu-camu processing, a significant amount of agroindustrial residue is generated. Despite the studies showing the bioactive value and biological potential of the fruit, few studies have approached the possible processing techniques, transformation and preservation of camu-camu fruits and its agroindustrial pomace. Therefore, the present work has the objective of evaluating two different drying processes applied to camu-camu pomace (peel and seeds with residual pulp), freeze drying and hot air drying, in order to obtain a functional fruit product. This thesis was divided into three stages: the first one shows the studies related to the freeze drying and hot air drying, where we demonstrated the impact of the selected drying techniques on the bioactive components of camu-camu, taking the fresh pomace as the control group. Among the investigated conditions, the groups obtained at 50ºC and 4 m/s (SC50) and 80ºC and 6 m/s (SC80) were selected as for further studies, based on their ascorbic acid final content and Folin-Ciocalteau reducing capacity. In addition to SC50 and SC80, the fresh pomace (RF) and freeze dried (RL) samples were also evaluated in these further stages of the research. Overall, the results show higher bioactive concentration in the RF samples, followed by RL, SC50 and SC80. On the second step of the research, the antioxidant, antimicrobial and antienzymatic activities were evaluated and the same tendency was observed. It was also reported, for the first time in the literature, the presence of syringic acid in dried camu-camu pomace. In the third and final stage of the research, it was investigated the effect of dried camu-camu on aging and neuroprotective disorders, using the in vivo model C.elegans. It was observed that camu-camu extracts were able to modulate important signaling genes relevant to thermal and oxidative stresses (p < 0.05). The polar acid, polar basic and polar neutral fractions obtained from the low molecular extracts of SC50 were able to extend the lifespan of wild type N2 C. elegans in 20% and 13% (p < 0.001). Results also showed that the paralysis induced by the β1-42 amyloid was significantly (p < 0.0001) retarded in CL4176 worms. Similarly, the camu-camu extracts attenuated the dopaminergic induction associated to Parkinson’s disease. Finally, a global analysis of the data presented here reveal that the camu-camu pomace, a co-product obtained from the industrial processing of a native Brazilian fruit, is a relevant natural source of health relevant compounds. This thesis, shows for the first time, the multifunctionality of camu-camu pomace, a natural resource still underexploited for scientific, commercial and technological purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work evaluated the fresh, spray dried (with 10 % of Arabic Gum) and freeze dried jambolan pulp (Eugenia jambolana Lam.) in regard to physicochemical (pH, moisture, water activity, average particle diameter, solubility and color), bioactive [total phenolic content (TPC), monomeric anthocyanin, pronathocyanidin (PA), total elagic acid (TEA), myricetin and cyanidin] and in vitro functionality (antioxidant, antienzymatic and antimicrobial activities]. In addition, the in vivo functionality of jambolan pulp was investigated using the Caenorhabditis elegans model for insulin signaling, longevity and induced neurodegeneration (Alzheimer’s disease and Parkinson’s disease related symptoms). The dried jambolan pulp presented TPC retention (50% to 75%), PA (90% to 98%), TEA (31% to 83%), myricetin (40% to 84%), cyanidin (72% to 84%) and antioxidant activity (15%). The fresh jambolan pulp, the freeze dried pulp and the spray dried jambolan pulp presented high enzymatic inhibitory activity against pancreatic lipase (4,4 to 5,8 mg/mL), alpha-glycosidase (10,3 to 13,8 mg/mL) and alpha-amylase (8,9 to 11,2 mg/mL). They also were active inhibitors against the pathogen S. aureus. The dried jambolan experimental samples were able to increase the expression of several genes linked to the insulin signaling pathways (SIR-2.1, PPTR-1, DAF-16, SOD-3, e CTL) and increased the lifespan in C. elegans (18,07 % - 24,34 %), besides decreasing the amyloid AB1-42 aggregation induced paralysis and MPP+ (1-methyl-4-phenylpyridinium) induced neurodegeneration. Based on that, the jambolan pulp and the spray dried jambolan pulp were further selected for the production of caprine frozen yogurt with the addition of Bifidobacterium animalis subsp. lactis BI-07. The final product were evaluated in regard to their physicochemical (pH, acidity, total solids, protein, total reducing sugars, fat, ashes, overrun, melting test), bioactive (TPC and monomeric anthocyanin, antioxidant activity, probiotic viability and sensory analysis (sensory acceptance). The results showed that samples with probiotic had lowest pH and higher acidity, TPC, anthocyanin and antioxidant activity. It was also observed low overrun (14.2% to 22.6%). vi Samples with probiotic had lower flavor scores. Overall, this research presents the jambolan as a highly functional bioactive-rich fruit with the potential to modulate important biological pathways, extend lifespan and retard the development of neurodegenerative diseases. Jambolan is an underexploited exotic fruit with a high colorant potential and this thesis shows for the first time in the literature important technological, biological and scientific data about this fruit that could be used towards the development of health-oriented food products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The success achieved by thermal methods of recovery, in heavy oils, prompted the emergence of studies on the use of electromagnetic waves as heat generating sources in oil reservoirs. Thus, this generation is achieved by three types of different processes according to the frequency range used. They are: the electromagnetic induction heating, the resistive and the dielectric, also known as radiation. This study was based on computer simulations in oil reservoirs with characteristics similar to those found in the sedimentary basins of the Brazilian Northeast. All cases studied were simulated using the software STARS, CMG (Computer Group, version 2012.10 Modeling). Some simulations took into account the inclusion of electrically sensitive particles in certain sectors of the reservoir model studied by fracturing. The purpose of this work is the use of the electromagnetic induction heating as a recovery method of heavy oil, to check the influence of these aforementioned particles on the reservoir model used. Comparative analyses were made involving electromagnetic induction heating, the operation of hydraulic fracturing and the injection of water to the different situations of the reservoir model studied. It was found that fracturing the injection well in order that the electromagnetic heating occurs in the same well where there is water injection, there was a considerable increase in the recovery factor and in the cumulative oil production in relation to the models in which hydraulic fracturing occurred in the production well and water injection in the injection well. This is due to the generation of steam in situ in the reservoir.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we have investigated some aspects of the two-dimensional flow of a viscous Newtonian fluid through a disordered porous medium modeled by a random fractal system similar to the Sierpinski carpet. This fractal is formed by obstacles of various sizes, whose distribution function follows a power law. They are randomly disposed in a rectangular channel. The velocity field and other details of fluid dynamics are obtained by solving numerically of the Navier-Stokes and continuity equations at the pore level, where occurs actually the flow of fluids in porous media. The results of numerical simulations allowed us to analyze the distribution of shear stresses developed in the solid-fluid interfaces, and find algebraic relations between the viscous forces or of friction with the geometric parameters of the model, including its fractal dimension. Based on the numerical results, we proposed scaling relations involving the relevant parameters of the phenomenon, allowing quantifying the fractions of these forces with respect to size classes of obstacles. Finally, it was also possible to make inferences about the fluctuations in the form of the distribution of viscous stresses developed on the surface of obstacles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The distribution of diagenetic alterations in Late Cenomanian siliciclastic reservoirs from Potiguar Basin was influenced by the stratigraphic framework and the depositional system. Seismic sections and geophysical logs of two wells drilled in the SW portion of the mentioned basin above register regional stratigraphic surfaces representing maximum floods related to a transgressive event. The sequential analysis of 80 m of drill core (~450 m deep) recognized nine depositional facies with an upwards granodecrescent standard piling that limits cycles with an erosional conglomeratic base (lag) overlain by intercalations of medium to very fine sandstones showing cross bedding (channel, planar and low angled) and horizontal bedding (plane-parallel , wave and flaser). The top of the cycles is marked by the deposition of pelites and the development of paleosoils and lagoons. The correlation of genetically related facies reveals associations of channel fillings, crevasse, and flood plains deposited in a transgressive system. Detailed descriptions of seventy nine thin sections aided by MEV-EBSD/EDS, DRX and stable isotope analyses in sandstones revealed an arcosian composition and complex textural arrays with abundant smectite fringes continuously covering primary components, mechanically infiltrated cuticles and moldic and intragrain pores. K-feldspar epitaxial overgrowth covers microcline and orthoclase grains before any other phase. Abundant pseudomatrix due to the compactation of mud intraclasts concentrate along the stratification planes, locally replaced by macrocristalline calcite and microcrystalline and framboidal pyrite. Kaolinite (booklets and vermicular), microcrystalline smectite, microcrystalline titanium minerals and pyrite replace the primary components. The intergrain porosity prevails over the moldic, intragrain and contraction porosities. The pores are poorly connected due to the presence of intergranular smectite, k-feldspar overgrowth, infiltrated mud and pseudomatrix. The sandstones were subjected to eodiagenetic conditions next to the surface and shallow burial mesodiagenetic conditions. The diagenetic alterations reduced the porosity and the permeability mainly due to the precipitation of smectite fringes, compactation of mud intraclasts onto the pseudomatrix and cementing by poikilotopic calcite characterizing different reservoir petrofacies. These diagenetic products acted as barriers and detours to the flow of fluids thus reducing the quality of the reservoir.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modern industrial progress has been contaminating water with phenolic compounds. These are toxic and carcinogenic substances and it is essential to reduce its concentration in water to a tolerable one, determined by CONAMA, in order to protect the living organisms. In this context, this work focuses on the treatment and characterization of catalysts derived from the bio-coal, by-product of biomass pyrolysis (avelós and wood dust) as well as its evaluation in the phenol photocatalytic degradation reaction. Assays were carried out in a slurry bed reactor, which enables instantaneous measurements of temperature, pH and dissolved oxygen. The experiments were performed in the following operating conditions: temperature of 50 °C, oxygen flow equals to 410 mL min-1 , volume of reagent solution equals to 3.2 L, 400 W UV lamp, at 1 atm pressure, with a 2 hours run. The parameters evaluated were the pH (3.0, 6.9 and 10.7), initial concentration of commercial phenol (250, 500 and 1000 ppm), catalyst concentration (0, 1, 2, and 3 g L-1 ), nature of the catalyst (activated avelós carbon washed with dichloromethane, CAADCM, and CMADCM, activated dust wood carbon washed with dichloromethane). The results of XRF, XRD and BET confirmed the presence of iron and potassium in satisfactory amounts to the CAADCM catalyst and on a reduced amount to CMADCM catalyst, and also the surface area increase of the materials after a chemical and physical activation. The phenol degradation curves indicate that pH has a significant effect on the phenol conversion, showing better results for lowers pH. The optimum concentration of catalyst is observed equals to 1 g L-1 , and the increase of the initial phenol concentration exerts a negative influence in the reaction execution. It was also observed positive effect of the presence of iron and potassium in the catalyst structure: betters conversions were observed for tests conducted with the catalyst CAADCM compared to CMADCM catalyst under the same conditions. The higher conversion was achieved for the test carried out at acid pH (3.0) with an initial concentration of phenol at 250 ppm catalyst in the presence of CAADCM at 1 g L-1 . The liquid samples taken every 15 minutes were analyzed by liquid chromatography identifying and quantifying hydroquinone, p-benzoquinone, catechol and maleic acid. Finally, a reaction mechanism is proposed, cogitating the phenol is transformed into the homogeneous phase and the others react on the catalyst surface. Applying the model of Langmuir-Hinshelwood along with a mass balance it was obtained a system of differential equations that were solved using the Runge-Kutta 4th order method associated with a optimization routine called SWARM (particle swarm) aiming to minimize the least square objective function for obtaining the kinetic and adsorption parameters. Related to the kinetic rate constant, it was obtained a magnitude of 10-3 for the phenol degradation, 10-4 to 10-2 for forming the acids, 10-6 to 10-9 for the mineralization of quinones (hydroquinone, p-benzoquinone and catechol), 10-3 to 10-2 for the mineralization of acids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of plants for medicinal purposes is ancient, with widespread application in medicinal drugs. Although plants are promising sources for the discovery of new molecules of pharmacological interest, estimates show that only 17% of them have been studied for their possible use in medicine. Thus, biodiversity of Brazilian flora represents an immense potential for economic use by the pharmaceutical industry. The plant Arrabidaea chica, popularly known as “pariri”, is common in the Amazon region, and it is assigned several medicinal properties. The leaves of this plant are rich in anthocyanins, which are phenolic compounds with high antioxidant power. Antioxidant compounds play a vital role in the prevention of neurological and cardiovascular diseases, cancer and diabetes, among others. Within the anthocyanins found in Arrabidaea chica, stands out Carajurin (6,7-dihydroxy-5,4’- dimethoxy-flavilium), which is the major pigment encountered in this plant. The present work aimed to study on supercritical extraction and conventional extraction (solid-liquid extraction) in leaves of Arrabidaea chica, evaluating the efficiency of the extractive processes, antioxidant activity and quantification of Carajurin contained in the extracts. Supercritical extraction used CO2 as solvent with addition of co-solvent (ethanol/water mixture) and were conducted by the dynamic method in a fixed bed extractor. The trials followed a 24-1 fractional factorial design, the dependent variables were: process yield, concentration of Carajurin and antioxidant activity; and independent variables were: pressure, temperature, concentration of co-solvent (v/v) and concentration of water in the co-solvent mixture (v/v). Yields (mass of dry extract/mass of raw material used) obtained from supercritical extraction ranged from 15.1% to 32%, and the best result was obtained at 250 bar and 40 °C, co-solvent concentration equal to 30% and concentration of water in the co-solvent mixture equal to 50%. Through statistical analysis, it was found that the concentration of co-solvent revealed significant effect on the yield. Yields obtained from conventional extractions were of 8.1% (water) and 5.5% (ethanol). Through HPLC (High-performance liquid chromatography) analysis, Carajurin was quantified in all the extracts and concentration values (Carajurin mass/mass of dry extract) ranged between 1% and 2.21% for supercritical extraction. For conventional extraction, Carajurin was not detected in the aqueous extract, while the ethanol extract showed Carajurin content of 7.04%, and therefore, more selective in Carajurin than the supercritical extraction. Evaluation of antioxidant power (radical 2,2-diphenyl-1-picrylhydrazyl – DPPH – sequestration method) of the supercritical extracts resulted in EC50 values (effective concentration which neutralizes 50% of free radicals) ranged from 38.34 to 86.13 μg/mL, while conventional extraction resulted in EC50 values of 167.34 (water) and 42.58 (ethanol) μg/mL. As for the quantification of total phenolic content (Folin-Ciocalteau analysis) of the supercritical extracts resulted in values ranged from 48.93 and 88.62 mg GAE/g extract (GAE = Gallic Acid Equivalents), while solid-liquid extraction resulted in values of 37.63 (water) and 80.54 (ethanol) mg GAE/g extract. The good antioxidant activity cannot be attributed solely to the presence of Carajurin, but also the existence of other compounds and antioxidants in Arrabidaea chica. By optimizing the experimental design, it was possible to identify the experiment that presented the best result considering the four dependent variables together. This experiment was performed under the following conditions: pressure of 200 bar, temperature of 40 °C, co-solvent concentration equal to 30% and concentration of water in the co-solvent mixture equal to 30%. It is concluded that, within the studied range, it is possible to purchase the optimum result using milder operating conditions, which implies lower costs and greater ease of operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposed the study of the treatment of a synthetic wastewater contaminated with BTX by electro-oxidation batch with the anode of Ti/PbO2, and the adsorption of BTX using expanded perlite as adsorbent material, and to evaluate the best operating conditions both methods in order to perform a sequential treatment (adsorption and electro-oxidation) and achieve greater efficiency in the removal of the compounds. The operating conditions were measured: temperature, current density and applied amount of the adsorbent material, by UV-VIS analysis and Demand Chemical oxygen demand (COD). According to the experimental results, the electro-oxidative treatment was efficient in the degradation of the compounds BTX (benzene, toluene and xylenes) in synthetic sewage due to the electrochemical properties of the anode of Ti/PbO2. The applied current density and temperature promoted increased efficiency of COD removal, reaching obtain percentages greater than 70%. In the adsorption process, the temperature increase was not a factor in the removal of organic matter, while the increase in the amount of adsorbent material led to an increase in the percentage removal, obtaining 66.30% using 2 g of adsorbent. The selected operating conditions of both treatments performed separately take into account the removal efficiency of organic matter, and the low energy consumption and operating costs, so the sequential treatment were satisfactory reaching 87.26% of COD removal using adsorption as a pretreatment. Quantification of BTX through the analysis of gas chromatography at the end of the treatments also confirmed the removal efficiency of organic compounds, giving outstanding advantages to sequential treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recognition of karst reservoirs in carbonate rocks has become increasingly common. However, most karst features are small to be recognized in seismic sections or larger than expected to be investigated with borehole data. One way forward has been the study of analogue outcrops and caves. The present study investigates lithofacies and karst processes, which lead to the generation of the largest system of caves in South America. The study area is located in the Neoproterozoic Una Group in central-eastern Brazil. This province comprises several systems of carbonate caves (Karmann and Sanchéz, 1979), which include the Toca da Boa Vista and Barriguda caves, considered the largest caves in South America (Auler and Smart, 2003). These caves were formed mainly in dolomites of the Salitre Formation, which was deposited in a shallow marine environment in an epicontinental sea (Medeiros and Pereira, 1994). The Salitre Formation in the cave area comprises laminated mud/wakestones, intraclastic grainstones, oncolitic grainstones, oolitic grainstones, microbial laminites, colunar stromatolites, trombolites and fine siliciclastic rocks (marls, shales, and siltites). A thin layer and chert nodules also occur at the top of the carbonate unit. Phosphate deposits are also found. Our preliminary data indicate that folds and associated joints control the main karstification event at the end of the Brasiliano orogeny (740-540 Ma). We recognized five lithofacies in the cave system: (1) Bottom layers of grainstone with cross bedding comprise the main unit affected by speleogenesis, (2) thin grainstone layers with thin siltite layers, (3) microbial laminites layers, (4) layers of columnar stromatolites, and a (5) top layer of siltite. Levels (1) to (3) are affected by intense fracturing, whereas levels (4) and (5) seal the caves and have little fracturing. Chert, calcite and gipsite veins cut across the carbonate units and play a major role in diagenesis. Our preliminary study indicate that hypogenic spelogenesis is the main process of karst development and contributed significantly to the generation of secondary porosity and permeability in the carbonate units.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The produce of waste and the amount of the water produced coming from activities of petroleum production and extraction has been a biggest challenge for oil companies with respect to environmental compliance due to toxicity. The discard or the reuse this effluent containing organic compounds as BTEX (benzene, toluene, ethylbenzene and xylene) can cause serious environmental and human health problems. Thus, the objective this paper was study the performance of two process (separately and sequential) in one synthetic effluent for the benzene, toluene and xylene removal (volatile hydrocarbons presents in the produced water) through of electrochemical treatment using Ti/Pt electrode and exchange resin ionic used in the adsorption process. The synthetic solution of BTX was prepared with concentration of 22,8 mg L-1, 9,7 mg L-1 e 9,0 mg L-1, respectively, in Na2SO4 0,1 mol L-1. The experiments was developed in batch with 0.3 L of solution at 25ºC. The electrochemical oxidation process was accomplished with a Ti/Pt electrode with different current density (J = 10, 20 e 30 mA.cm-2). In the adsorption process, we used an ionic exchange resin (Purolite MB 478), using different amounts of mass (2,5, 5 and 10 g). To verify the process of technics in the sequential treatment, was fixed the current density at 10 mA cm-2 and the resin weight was 2.5 g. Analysis of UV-VIS spectrophotometry, chemical oxygen demand (COD) and gas chromatography with selective photoionization detector (PID) and flame ionization (FID), confirmed the high efficiency in the removal of organic compounds after treatment. It was found that the electrochemical process (separate and sequential) is more efficient than absorption, reaching values of COD removal exceeding 70%, confirmed by the study of the cyclic voltammetry and polarization curves. While the adsorption (separately), the COD removal did not exceed 25,8%, due to interactions resin. However, the sequential process (electrochemical oxidation and adsorption) proved to be a suitable alternative, efficient and cost-effectiveness for the treatment of effluents petrochemical.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Barium Cerate (BaCeO3) is perovskite type structure of ABO3, wherein A and B are metal cations. These materials, or doped, have been studied by having characteristics that make them promising for the application in fuel cells solid oxide, hydrogen and oxygen permeation, as catalysts, etc .. However, as the ceramic materials mixed conductivity have been produced by different synthesis methods, some conditions directly influence the final properties, one of the most important doping Site B, which may have direct influence on the crystallite size, which in turn directly influences their catalytic activity. In this study, perovskite-type (BaCexO3) had cerium gradually replaced by praseodymium to obtain ternary type materials BaCexPr1-xO3 and BaPrO3 binaries. These materials were synthesized by EDTA/Citrate complexing method and the material characterized via XRD, SEM and BET for the identification of their structure, morphology and surface area. Moreover were performed on all materials, catalytic test in a fixed bed reactor for the identification of that person responsible for complete conversion of CO to CO2 at low operating temperature, which step can be used as the subsequent production of synthesis gas (CO + H2) from methane oxidation. In the present work the crystalline phase having the orthorhombic structure was obtained for all compositions, with a morphology consisting of agglomerated particles being more pronounced with increasing praseodymium in the crystal structure. The average crystal size was between 100 nm and 142,2 nm. The surface areas were 2,62 m²g-1 for the BaCeO3 composition, 3,03 m²g-1 to BaCe0,5Pr0,5O3 composition and 2,37 m²g-1 to BaPrO3 composition. Regarding the catalytic tests, we can conclude that the optimal flow reactor operation was 50 ml / min and the composition regarding the maximum rate of conversion to the lowest temperature was BaCeO3 to 400° C. Meanwhile, there was found that the partially replaced by praseodymium, cerium, there was a decrease in the catalytic activity of the material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A constante busca da indústria de petróleo pelo aumento de produção à um baixo custo operacional faz necessário o desenvolvimento de tecnologias que una as duas necessidades. A Acidificação de matriz é um método de estimulação frequentemente empregado para aumentar produção de um poço de petróleo com um custo menor se comparado a um fraturamento. O objetivo deste trabalho é estudar a obtenção de nanoemulsões ácidas para aplicação em acidificação de matriz. As nanoemulsões são capazes de retardar reações, por diminuir a difusão do ácido no meio, possibilitando a acidificação em reservatórios com baixa permeabilidade. Os reagentes utilizados para formar os sistemas nanoemulsionados foram UNT L90/OMS e RNX 110 como tensoativos, Sec-butanol como cotensoativo, Xileno e Querosene como fase óleo e Solução de HCl como fase aquosa. As nanoemulsões foram obtidas a partir da diluição de microemulsões com água ou solução de HCl. Foi realizado estudo das tensões superficiais, estudo das cinéticas de reação, avaliação da injeção em rocha carbonática e remoção de borra asfáltica. As nanoemulsões apresentaram tensão superficial menor que suas microemulsões de origem. As nanoemulsões tiveram êxito em retardar a reação entre CaCO3 e HCl, onde o sistema mais eficiente é composto por UNT L90/OMS, Secbutanol, Querosene e solução de HCl. As nanoemulsões foram eficientes em formar wormholes em plugs de carbonato calcitico com baixa permeabilidade natural. As wormholes proporcionaram incremento de permeabilidade alcançando valores de até 390 mD. O sistema ácido apresentou bom resultado de remoção de borra asfáltica, mostrando o potencial das nanoemulsões em remover esse tipo de dano. Conclui-se que os sistemas nanoemulsionados têm grande potencial de aplicação em acidificação de matriz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unbridled consumption of electronic equipment associated with fast immersion of new technologies on the market leads to the accelerated growth of electronic waste. Such waste mostly contains printed circuit boards in its structure. Printed circuit boards have many metals, including heavy metals, being highly toxic. Electronic waste is discarded improperly and indiscriminately, usually without any previous treatment and with other municipal waste, contaminating the environment and causing serious problems to human health. Beyond these metals, there are also precious metals and high value-added basis, that can be recovered and recycled, reducing the exploration of natural resources. Thus, due to the high growth potential and reuse of these waste treatment processes, characterization and separation were applied to the printed circuit boards. The printed circuit boards were subjected to physical treatments such as dismantling, crushing, sizing separation, magnetic separation and chemical treatments such as pyrolysis and leaching. Through characterization process (pyrolysis and leaching) the proportions of the components of the granulometric range were determined: 46,08% of metals; 23,32% of polymers and 30,60% of ceramics. It was also observed by particle size separation that metal components tend to concentrate in coarse fractions, while polymeric and ceramic components in fine fractions. From the magnetic separation process was obtained 12,08% of magnetic material and 82,33% of non-magnetic material.