974 resultados para CLASS-2 INTEGRONS
Resumo:
Owing to its special mode of evolution and central role in the adaptive immune system, the major histocompatibility complex (MHC) has become the focus of diverse disciplines such as immunology, evolutionary ecology, and molecular evolution. MHC evolution has been studied extensively in diverse vertebrate lineages over the last few decades, and it has been suggested that birds differ from the established mammalian norm. Mammalian MHC genes evolve independently, and duplication history (i.e., orthology) can usually be traced back within lineages. In birds, this has been observed in only 3 pairs of closely related species. Here we report strong evidence for the persistence of orthology of MHC genes throughout an entire avian order. Phylogenetic reconstructions of MHC class II B genes in 14 species of owls trace back orthology over tens of thousands of years in exon 3. Moreover, exon 2 sequences from several species show closer relationships than sequences within species, resembling transspecies evolution typically observed in mammals. Thus, although previous studies suggested that long-term evolutionary dynamics of the avian MHC was characterized by high rates of concerted evolution, resulting in rapid masking of orthology, our results question the generality of this conclusion. The owl MHC thus opens new perspectives for a more comprehensive understanding of avian MHC evolution.
Resumo:
Crystallographic data about T-Cell Receptor - peptide - major histocompatibility complex class I (TCRpMHC) interaction have revealed extremely diverse TCR binding modes triggering antigen recognition. Understanding the molecular basis that governs TCR orientation over pMHC is still a considerable challenge. We present a simplified rigid approach applied on all non-redundant TCRpMHC crystal structures available. The CHARMM force field in combination with the FACTS implicit solvation model is used to study the role of long-distance interactions between the TCR and pMHC. We demonstrate that the sum of the coulomb interactions and the electrostatic solvation energies is sufficient to identify two orientations corresponding to energetic minima at 0° and 180° from the native orientation. Interestingly, these results are shown to be robust upon small structural variations of the TCR such as changes induced by Molecular Dynamics simulations, suggesting that shape complementarity is not required to obtain a reliable signal. Accurate energy minima are also identified by confronting unbound TCR crystal structures to pMHC. Furthermore, we decompose the electrostatic energy into residue contributions to estimate their role in the overall orientation. Results show that most of the driving force leading to the formation of the complex is defined by CDR1,2/MHC interactions. This long-distance contribution appears to be independent from the binding process itself, since it is reliably identified without considering neither short-range energy terms nor CDR induced fit upon binding. Ultimately, we present an attempt to predict the TCR/pMHC binding mode for a TCR structure obtained by homology modeling. The simplicity of the approach and the absence of any fitted parameters make it also easily applicable to other types of macromolecular protein complexes.
Resumo:
Background: Analyzing social differences in the health of adolescents is a challenge. The accuracy of adolescent's report on familial socio-economic position is unknown. The aims of the study were to examine the validity of measuring occupational social class and family level of education reported by adolescents aged 12 to 18, and the relationship between social position and self-reported health.Methods: A sample of 1453 Spanish adolescents 12 to 18 years old from urban and rural areas completed a self-administered questionnaire including the Child Health and Illness Profile-Adolescent Edition (CHIP-AE), and data on parental occupational social class (OSC) and level of education (LE). The responsible person for a sub-sample of teenagers (n = 91) were interviewed by phone. Kappa coefficients were estimated to analyze agreement between adolescents and proxy-respondents, and logistic regression models were adjusted to analyze factors associated with missing answers and disagreements. Effect size (ES) was calculated to analyze the relationship between OSC, LE and the CHIP-AE domain scores.Results: Missing answers were higher for father's (24.2%) and mother's (45.7%) occupational status than for parental education (8.4%, and 8.1% respectively), and belonging to a non-standard family was associated with more incomplete reporting of social position (OR = 4,98; 95%CI = 1,3–18,8) as was agreement between a parent and the adolescent. There were significant social class gradients, most notably for aspects of health related to resilience to threats to illness.ConclusionAdolescents can acceptably self-report on family occupation and level of education. Social class gradients are present in important aspects of health in adolescents.
Resumo:
[Traditions. Asie. Inde. Présidence de Bombay. Pakistan. Province du Sind. Tharparkar]
Resumo:
OBJECTIVE: Absent or reverse end-diastolic flow (Doppler II/III) in umbilical artery is correlated with poor perinatal outcome, particularly in intrauterine growth restricted (IUGR) fetuses. The optimal timing of delivery is still controversial. We studied the short- and long-term morbidity and mortality among these children associated with our defined management. STUDY DESIGN: Sixty-nine IUGR fetuses with umbilical Doppler II/III were divided into three groups; Group 1, severe early IUGR, no therapeutic intervention (n = 7); Group 2, fetuses with pathological biophysical profile, immediate delivery (n = 35); Group 3, fetuses for which expectant management had been decided (n = 27). RESULTS: In Group 1, stillbirth was observed after a mean delay of 6.3 days. Group 2 delivered at an average of 31.6 weeks and two died in the neonatal period (6%). In Group 3 after a mean delay of 8 days, average gestational age at delivery was 31.7 weeks; two intra uterine and four perinatal deaths were observed (22%). Long-term follow-up revealed no sequelae in 25/31 (81%) and 15/18 (83%), and major handicap occurred in 1 (3%) and 2 patients (11%), respectively, for Groups 2 and 3. CONCLUSION: Fetal mortality was observed in 22% of this high risk group. After a mean period of follow-up of 5 years, 82% of infants showed no sequelae. According to our management, IUGR associated with umbilical Doppler II or III does not show any benefit from an expectant management in term of long-term morbidity.
Resumo:
Acid-sensing ion channels (ASICs) are neuronal Na(+)-selective channels that are transiently activated by extracellular acidification. ASICs are involved in fear and anxiety, learning, neurodegeneration after ischemic stroke, and pain sensation. The small molecule 2-guanidine-4-methylquinazoline (GMQ) was recently shown to open ASIC3 at physiological pH. We have investigated the mechanisms underlying this effect and the possibility that GMQ may alter the function of other ASICs besides ASIC3. GMQ shifts the pH dependence of activation to more acidic pH in ASIC1a and ASIC1b, whereas in ASIC3 this shift goes in the opposite direction and is accompanied by a decrease in its steepness. GMQ also induces an acidic shift of the pH dependence of inactivation of ASIC1a, -1b, -2a, and -3. As a consequence, the activation and inactivation curves of ASIC3 but not other ASICs overlap in the presence of GMQ at pH 7.4, thereby creating a window current. At concentrations >1 mm, GMQ decreases maximal peak currents by reducing the unitary current amplitude. Mutation of residue Glu-79 in the palm domain of ASIC3, previously shown to be critical for channel opening by GMQ, disrupted the GMQ effects on inactivation but not activation. This suggests that this residue is involved in the consequences of GMQ binding rather than in the binding interaction itself. This study describes the mechanisms underlying the effects of a novel class of ligands that modulate the function of all ASICs as well as activate ASIC3 at physiological pH.
Resumo:
In a series of three experiments, participants made inferences about which one of a pair of two objects scored higher on a criterion. The first experiment was designed to contrast the prediction of Probabilistic Mental Model theory (Gigerenzer, Hoffrage, & Kleinbölting, 1991) concerning sampling procedure with the hard-easy effect. The experiment failed to support the theory's prediction that a particular pair of randomly sampled item sets would differ in percentage correct; but the observation that German participants performed practically as well on comparisons between U.S. cities (many of which they did not even recognize) than on comparisons between German cities (about which they knew much more) ultimately led to the formulation of the recognition heuristic. Experiment 2 was a second, this time successful, attempt to unconfound item difficulty and sampling procedure. In Experiment 3, participants' knowledge and recognition of each city was elicited, and how often this could be used to make an inference was manipulated. Choices were consistent with the recognition heuristic in about 80% of the cases when it discriminated and people had no additional knowledge about the recognized city (and in about 90% when they had such knowledge). The frequency with which the heuristic could be used affected the percentage correct, mean confidence, and overconfidence as predicted. The size of the reference class, which was also manipulated, modified these effects in meaningful and theoretically important ways.
Resumo:
A panel of 15 single alanine substitutions on the floor of the peptide binding groove of the murine class I histocompatibility molecule H-2Kd has been analyzed. All but two mutant molecules were expressed on the cell surface, and were tested for peptide binding and presentation to specific cytotoxic T lymphocytes. Eleven out of 13 mutant molecules appeared to be functionally altered. Five of the substituted residues were involved in the presentation of all peptides tested. Three participated in the presentation of certain peptides but not others. Three other residues participated in epitope formation through indirect interactions. Only two mutations had no detectable effect.
Resumo:
Host-pathogen interactions are a major evolutionary force promoting local adaptation. Genes of the major histocompatibility complex (MHC) represent unique candidates to investigate evolutionary processes driving local adaptation to parasite communities. The present study aimed at identifying the relative roles of neutral and adaptive processes driving the evolution of MHC class IIB (MHCIIB) genes in natural populations of European minnows (Phoxinus phoxinus). To this end, we isolated and genotyped exon 2 of two MHCIIB gene duplicates (DAB1 and DAB3) and 1665 amplified fragment length polymorphism (AFLP) markers in nine populations, and characterized local bacterial communities by 16S rDNA barcoding using 454 amplicon sequencing. Both MHCIIB loci exhibited signs of historical balancing selection. Whereas genetic differentiation exceeded that of neutral markers at both loci, the populations' genetic diversities were positively correlated with local pathogen diversities only at DAB3. Overall, our results suggest pathogen-mediated local adaptation in European minnows at both MHCIIB loci. While at DAB1 selection appears to favor different alleles among populations, this is only partially the case in DAB3, which appears to be locally adapted to pathogen communities in terms of genetic diversity. These results provide new insights into the importance of host-pathogen interactions in driving local adaptation in the European minnow, and highlight that the importance of adaptive processes driving MHCIIB gene evolution may differ among duplicates within species, presumably as a consequence of alternative selective regimes or different genomic context.
Resumo:
BACKGROUND: Non-adherence is one of the strongest predictors of therapeutic failure in HIV-positive patients. Virologic failure with subsequent emergence of resistance reduces future treatment options and long-term clinical success. METHODS: Prospective observational cohort study including patients starting new class of antiretroviral therapy (ART) between 2003 and 2010. Participants were naïve to ART class and completed ≥1 adherence questionnaire prior to resistance testing. Outcomes were development of any IAS-USA, class-specific, or M184V mutations. Associations between adherence and resistance were estimated using logistic regression models stratified by ART class. RESULTS: Of 314 included individuals, 162 started NNRTI and 152 a PI/r regimen. Adherence was similar between groups with 85% reporting adherence ≥95%. Number of new mutations increased with increasing non-adherence. In NNRTI group, multivariable models indicated a significant linear association in odds of developing IAS-USA (odds ratio (OR) 1.66, 95% confidence interval (CI): 1.04-2.67) or class-specific (OR 1.65, 95% CI: 1.00-2.70) mutations. Levels of drug resistance were considerably lower in PI/r group and adherence was only significantly associated with M184V mutations (OR 8.38, 95% CI: 1.26-55.70). Adherence was significantly associated with HIV RNA in PI/r but not NNRTI regimens. CONCLUSION: Therapies containing PI/r appear more forgiving to incomplete adherence compared with NNRTI regimens, which allow higher levels of resistance, even with adherence above 95%. However, in failing PI/r regimens good adherence may prevent accumulation of further resistance mutations and therefore help to preserve future drug options. In contrast, adherence levels have little impact on NNRTI treatments once the first mutations have emerged.
Resumo:
The concept of antibody-mediated targeting of antigenic MHC/peptide complexes on tumor cells in order to sensitize them to T-lymphocyte cytotoxicity represents an attractive new immunotherapy strategy. In vitro experiments have shown that an antibody chemically conjugated or fused to monomeric MHC/peptide can be oligomerized on the surface of tumor cells, rendering them susceptible to efficient lysis by MHC-peptide restricted specific T-cell clones. However, this strategy has not yet been tested entirely in vivo in immunocompetent animals. To this aim, we took advantage of OT-1 mice which have a transgenic T-cell receptor specific for the ovalbumin (ova) immunodominant peptide (257-264) expressed in the context of the MHC class I H-2K(b). We prepared and characterized conjugates between the Fab' fragment from a high-affinity monoclonal antibody to carcinoembryonic antigen (CEA) and the H-2K(b) /ova peptide complex. First, we showed in OT-1 mice that the grafting and growth of a syngeneic colon carcinoma line transfected with CEA could be specifically inhibited by systemic injections of the conjugate. Next, using CEA transgenic C57BL/6 mice adoptively transferred with OT-1 spleen cells and immunized with ovalbumin, we demonstrated that systemic injections of the anti-CEA-H-2K(b) /ova conjugate could induce specific growth inhibition and regression of well-established, palpable subcutaneous grafts from the syngeneic CEA-transfected colon carcinoma line. These results, obtained in a well-characterized syngeneic carcinoma model, demonstrate that the antibody-MHC/peptide strategy can function in vivo. Further preclinical experimental studies, using an anti-viral T-cell response, will be performed before this new form of immunotherapy can be considered for clinical use.
Resumo:
MHC-peptide tetramers have become essential tools for T-cell analysis, but few MHC class II tetramers incorporating peptides from human tumor and self-antigens have been developed. Among limiting factors are the high polymorphism of class II molecules and the low binding capacity of the peptides. Here, we report the generation of molecularly defined tetramers using His-tagged peptides and isolation of folded MHC/peptide monomers by affinity purification. Using this strategy we generated tetramers of DR52b (DRB3*0202), an allele expressed by approximately half of Caucasians, incorporating an epitope from the tumor antigen NY-ESO-1. Molecularly defined tetramers avidly and stably bound to specific CD4(+) T cells with negligible background on nonspecific cells. Using molecularly defined DR52b/NY-ESO-1 tetramers, we could demonstrate that in DR52b(+) cancer patients immunized with a recombinant NY-ESO-1 vaccine, vaccine-induced tetramer-positive cells represent ex vivo in average 1:5,000 circulating CD4(+) T cells, include central and transitional memory polyfunctional populations, and do not include CD4(+)CD25(+)CD127(-) regulatory T cells. This approach may significantly accelerate the development of reliable MHC class II tetramers to monitor immune responses to tumor and self-antigens.
Resumo:
The lpr gene has recently been shown to encode a functional mutation in the Fas receptor, a molecule involved in transducing apoptotic signals. Mice homozygous for the lpr gene develop an autoimmune syndrome accompanied by massive accumulation of double-negative (DN) CD4-8-B220+ T cell receptor-alpha/beta+ cells. In order to investigate the origin of these DN T cells, we derived lpr/lpr mice lacking major histocompatibility complex (MHC) class I molecules by intercrossing them with beta 2-microglobulin (beta 2m)-deficient mice. Interestingly, these lpr beta 2m-/- mice develop 13-fold fewer DNT cells in lymph nodes as compared to lpr/lpr wild-type (lprWT) mice. Analysis of anti-DNA antibodies and rheumatoid factor in serum demonstrates that lpr beta 2m-/- mice produce comparable levels of autoantibodies to lprWT mice. Collectively our data indicate that MHC class I molecules control the development of DN T cells but not autoantibody production in lpr/lpr mice and support the hypothesis that the majority of DN T cells may be derived from cells of the CD8 lineage.
Resumo:
Thymic positive and negative selection of developing T lymphocytes confronts us with a paradox: How can a T-cell antigen receptor (TCR)-major histocompatibility complex (MHC)/peptide interaction in the former process lead to transduction of signals allowing for cell survival and in the latter induce programmed cell death or a hyporesponsive state known as anergy? One of the hypotheses put forward states that the outcome of a TCR-MHC/peptide interaction depends on the cell type presenting the selecting ligand to the developing thymocyte. Here we describe the development and lack of self-tolerance of CD8(+) T lymphocytes in transgenic mice expressing MHC class I molecules in the thymus exclusively on cortical epithelial cells. Despite the absence of MHC class I expression on professional antigen-presenting cells, normal numbers of CD8(+) cells were observed in the periphery. Upon specific activation, transgenic CD8(+) T cells efficiently lysed syngeneic MHC class I(+) targets in vitro and in vivo, indicating that thymic cortical epithelium (in contrast to medullary epithelium and antigen-presenting cells of hematopoietic origin) is incapable of tolerance induction. Thus, compartmentalization of the antigen-presenting cells involved in thymic positive selection and tolerance induction can (at least in part) explain the positive/negative selection paradox.