972 resultados para CB-HRP
Resumo:
Long-range ordered stripes domain structures were observed in Dipalmitoylphosphatidylcholine (DPPC) Langmuir-Blodgett monolayer film which was spread on the subphase of lanthanide ion (Eu3+) solution and transferred to a freshly cleaved mica substrate by vertical deposition. This novel phenomenon was discussed in terms of the competitive interaction of dipole-dipole and electrostatic interactions of the DPPC molecules combined with lanthanide ions with those DPPC molecules free of lanthanide ions.
Resumo:
The effect of processing conditions on the electrical and dynamic behavior of carbon black (CB) filled ethylene/ethylacrylate copolymer (EEA) composites was investigated. The compounds were prepared by two methods, solution blending and mechanical mixing. Compared with the solution counterpart, the mechanical composites have a strong positive temperature coefficient (PTC) effect and a high dynamic elastic modulus, which results from the good dispersion state of carbon black in EEA, i.e. the strong interaction between carbon black and EEA. It can be concluded that the strong interaction between polymer and carbon black is essential for composites to have a high PTC intensity, good electrical reproducibility and high dynamic elastic modulus. Copyright (C) 1996 Published by Elsevier Science Ltd.
Resumo:
MCM-41 zeolite and Tron (II)-Phen/MCM-41 zeolite have been prepared and characterized by XRD, IR, NH3-TPD, HET and UV-Vis. The Iron( II)-Phen/MCM-41 zeolite+30% H2O2 system is capable for catalyzing hydroxylation of phenol.
Resumo:
The aqueous complexation of lanthanide complexes of citrate in pH 7.4 solutions has been studied by using lanthanide-induced shift and relaxation times measurement methods. These results indicate that citrate coordinate via 3-hydroxyl and 3-carboxylate groups with lanthanide ions and form 1:2 (Ln/cit) isostructural complexes through lanthanide series. We suggest a new coordination geometry which is different from that described in literature.
Resumo:
The interactions of lanthanide ions with sphingomyelin bilayers have been studied by using 2D NOESY spectroscopy and FT-Raman spectroscopy methods. The results indicate that lanthanide ions, as well as divalent calcium, combine mainly to the phosphate group in the polar headgroup and do not change the conformation of O-C-C-N+ backbone in the choline group of sphingomyelin bilayers. The polar headgroup is still extending parallel to the bilayer surface and O-C-C-N+ group is still in its gauche conformer.
Resumo:
Superconductor mixed oxides are often used as catalysts at high temperature in gas-solid phase oxidations and considered not suitable for lower temperature reactions in the liquid-solid phase; here the catalysis of La2-xSrxCuO4+/-lambda (x = 0, 0.1, 0.7, 1) mixed oxides in phenol hydroxylation at lower temperatures are studied, and we find that the value of x has a significant effect on catalytic activity: the lower its value, the higher the catalytic activity; a mechanism is proposed to explain the experimental phenomena.
Resumo:
Immobilization of protein molecules is a fundamental problem for scanning tunnelling microscopy (STM) measurements with high resolution. In this paper, an electrochemical method has been proved to be an effective way to fix native horseradish peroxidase (HRP) as well as inactivated HRP from electrolyte onto a highly oriented pyrolytic graphite (HOPG) surface. This preparation is suitable for both ex situ and in situ electrochemical STM (ECSTM) measurements. In situ STM has been successfully employed to observe totally different structures of HRP in three typical cases: (1) in situ ECSTM reveals an oval-shaped pattern for a single molecule in neutral buffer solution, which is in good agreement with the dimension determined as 6.2 x 4.3 x 1.2. nm(3) by ex situ STM for native HRP; (2) in situ ECSTM shows that the adsorbed HRP molecules on HOPG in a denatured environment exhibit swelling globes at the beginning and then change into a V-shaped pattern after 30 min; (3) in situ ECSTM reveals a black hole in every ellipsoidal sphere for inactivated HRP in strong alkali solution. The cyclic voltammetry results indicate that the adsorbed native HRP can directly catalyse the reduction of hydrogen peroxide, demonstrating that a direct electron transfer reduction occurred between the enzyme and HOPG electrode, whereas the corresponding cyclic voltammograms for denatured HRP and inactivated HRP adsorbed on HOPG electrodes indicate a lack of ability to catalyse H2O2 reduction, which confirms that the HRP molecules lost their biological activity. Obviously, electrochemical results powerfully support in situ STM observations.
Resumo:
MCM-41 mesoporous molecular sieve and iron(II)-Phen/MCM-41 have been prepared and characterized by XRD, IR, NH3-TPD, BET and UV-Vis. The iron(II)-Phen/MCM-41 molecular sieve + 30% H2O2 system is capable of performing hydroxylation of phenol.
Resumo:
Superconductor Y-Ba-Cu-O mixed oxides were synthesized and their catalysis in phenol hydroxylation was studied too. Results show that, Y2BaCuO5 has better activity than that of YBa2Cu3O7-x, With the catalysis study of another mixed oxide La2CuO4 a conclusion that AO structure unit is the key for mixed oxides to have high activity in phyenol hydroxylation was drawn. Meanwhile, the effects of reaction temperature, medium and medium (water) pH on phenol hydroxylation catalyzed by Y2BaCuO5 and the stability of the mixed oxides were also studied.
Resumo:
One and two dimentional NMR methods were used to investigate the interactions of lanthanide complexes (Lncit(2) and Ln-DTPA) with phospholipid bilayers, The results showed that in the phospholipid bilayers dispersion containing citrate ligand at pH 7.4, lanthanide ions would initially combine with citrate ligand and form Lncit, complexes which have little effect on the structure of phospholipid bilayers. Ln-DTPA complex does not affect the bilayers structure either. These results provided important experimental data for evaluating scientifically the toxicities of lanthanide ions when they were introduced into the biological body.
Resumo:
The conductivity mechanism for a carbon black (CB) filled high-density polyethylene (HDPE) compound was investigated in this work. From the experimental results obtained, it can be seen that the relation between electrical current density (J) and applied voltage across the sample (V) coincides with Simmons's equation (i.e., the electrical resistivity of the compound decreases with the applied voltage, especially at the critical voltage). The minimum electrical resistivity occurs near the glass transition temperature (T-g) of HDPE (198 K). It can be concluded that electron tunneling is an important mechanism and a dominant transport process in the HDPE/CB composite. A new model of carbon black dispersion in the matrix was established, and the resistivity was calculated by using percolation and quantum mechanical theories. (C) 1996 John Wiley & Sons, Inc.
Resumo:
The aqueous complexation of lanthanide ions with citrate in pH 7.4 solution has been investigated with use of the lanthanide-induced shift and paramagnetic relaxation rate enhancement methods. The results show that citrate coordinates via hydroxyl and central carboxylate groups with lanthanide ions and forms 1:2 (Ln/cit) isostructural complexes through the lanthanide series. A new possible coordination geometry deduced from our experimental data is suggested and discussed.
Resumo:
The interaction of trivalent lanthanide ions and divalent calcium ions with sphingomyelin bilayer has been studied by FT-Raman spectroscopy. The results showed that the bonding of metal ions to the phosphate group of sphingomyelin bilayer, either La3+ or Ca2+, did not change the conformation of the choline group, that is, O-C-C-N+ is still in its gauche conformation. The presence of metal ions changed the states of the interfacial region from liquid-like to amorphous state and even to crystalline. They increased the fluidity of acyl chains of sphingomyelin bilayer and made them packed disorderly.
Resumo:
With the wide application of rare earth in agriculture, medicament, especially the application of Gd-DTPA as nuclear magnetic resonance image reagent in clinical practice([1]), the studies on the toxicology in biological body, as well as the study on the use as informative probes instead of divalent calcium ion in biological and biochemical research have attracted intensive concern([2]). Phospholipids bilayers have served as a model of biomembrane in the last two decades. The effects of metal ions on the conformation of polar headgroup of dipalmitoylphosphatidylcholine (DPPC) bilayers have been reported([3]). Sphingomyelin is major component of several biological tissues such as brain and nerve cells and has identical polar headgroup to DPPC. The interaction of metal ions with sphingomyelin bilayer remains nonrevealed. This note presents the results of the study on this aspect.
Resumo:
The interaction of silica with dipalmitoylphosphatidylcholine (DPPC) liposomes has been studied by detecting H-1 and 2D NOESY NMR spectra and measuring proton spin-lattice relaxation time (T-1). The antagonistic effect of aluminium citrate on silica has also been studied by measuring the proton T-1 values, The results show that silica particles mainly bind to the phosphate moiety of the polar headgroup of DPPC bilayers through hydrogen bonds between Si-OH and O-P groups, but they have no significant effect on the conformation of the choline group of the polar headgroup, The addition of silica particles decreases the mobilities of the hydrocarbon chains slightly, Proton T-1 data also indicate that aluminium citrate reduces the effect of silica, A possible mechanism for the toxicity of silica and the antagonistic effect of aluminium titrate on silica is suggested. (C) 1995 Academic Press Inc.