834 resultados para CAMERAS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

描述了一种基于立体视觉的移动机器人自主导航定位系统。该系统采用双目立体视觉完成环境特征的 3D信息提取 ,实时计算出机器人相对作业目标的位姿 (6D)关系 ,导引移动机器人控制系统按目标导向进行运动。系统在相对位姿计算中采用旋动(Screw)理论 ,将带约束的多变量函数的非线性优化问题转化为线性方程组的最小二乘问题 ,简化了计算复杂性。实验表明 ,这个导航定位系统在定位精度和数据处理速度上均可满足机器人导航的要求。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文介绍一种应用在遥控水下机器人上的视频传输与监控技术。采用光多路复用器实现水面与水下的数据及视频传输,通过工业以太网实现整个系统的摄像机及灯光控制,并对传输到水面视频信号进行显示、叠加及存储。该技术成功的应用在新开发的遥控水下机器人中,效果良好。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report documents the design and implementation of a binocular, foveated active vision system as part of the Cog project at the MIT Artificial Intelligence Laboratory. The active vision system features a three degree of freedom mechanical platform that supports four color cameras, a motion control system, and a parallel network of digital signal processors for image processing. To demonstrate the capabilities of the system, we present results from four sample visual-motor tasks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Passive monitoring of large sites typically requires coordination between multiple cameras, which in turn requires methods for automatically relating events between distributed cameras. This paper tackles the problem of self-calibration of multiple cameras which are very far apart, using feature correspondences to determine the camera geometry. The key problem is finding such correspondences. Since the camera geometry and photometric characteristics vary considerably between images, one cannot use brightness and/or proximity constraints. Instead we apply planar geometric constraints to moving objects in the scene in order to align the scene"s ground plane across multiple views. We do not assume synchronized cameras, and we show that enforcing geometric constraints enables us to align the tracking data in time. Once we have recovered the homography which aligns the planar structure in the scene, we can compute from the homography matrix the 3D position of the plane and the relative camera positions. This in turn enables us to recover a homography matrix which maps the images to an overhead view. We demonstrate this technique in two settings: a controlled lab setting where we test the effects of errors in internal camera calibration, and an uncontrolled, outdoor setting in which the full procedure is applied to external camera calibration and ground plane recovery. In spite of noise in the internal camera parameters and image data, the system successfully recovers both planar structure and relative camera positions in both settings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This is a collection of data on the construction operation and performance of the two image dissector cameras. Some of this data is useful in deciding whether certain shortcomings are significant for a given application and if so how to compensate for them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an image-based approach to infer 3D structure parameters using a probabilistic "shape+structure'' model. The 3D shape of a class of objects may be represented by sets of contours from silhouette views simultaneously observed from multiple calibrated cameras. Bayesian reconstructions of new shapes can then be estimated using a prior density constructed with a mixture model and probabilistic principal components analysis. We augment the shape model to incorporate structural features of interest; novel examples with missing structure parameters may then be reconstructed to obtain estimates of these parameters. Model matching and parameter inference are done entirely in the image domain and require no explicit 3D construction. Our shape model enables accurate estimation of structure despite segmentation errors or missing views in the input silhouettes, and works even with only a single input view. Using a dataset of thousands of pedestrian images generated from a synthetic model, we can perform accurate inference of the 3D locations of 19 joints on the body based on observed silhouette contours from real images.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this work is to navigate through an office environmentsusing only visual information gathered from four cameras placed onboard a mobile robot. The method is insensitive to physical changes within the room it is inspecting, such as moving objects. Forward and rotational motion vision are used to find doors and rooms, and these can be used to build topological maps. The map is built without the use of odometry or trajectory integration. The long term goal of the project described here is for the robot to build simple maps of its environment and to localize itself within this framework.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RESUMO: Existem vários métodos para avaliar o crescimento da vegetação e a taxa de cobertura do solo. Medidas precisas e rápidas podem ser obtidas do tratamento digital de imagens geradas de câmeras fotográficas ou de vídeo. Há disponível, no mercado, diversos processadores de imagens que apresentam funções básicas semelhantes, mas com certas particularidades que poderão trazer maior benefício para o usuário, dependendo da aplicação. O SPRING, desenvolvido pelo INPE, é de domínio público, sendo mais abrangente do que um processador de imagens, incluindo funções de geoprocessamento. O ENVI foi desenvolvido para a análise de imagens multiespectrais e hiperespectrais, podendo também ser utilizado para o processamento de imagens obtidas de câmeras de vídeo, por exemplo. O KS-300 é um conjunto de hardware e de software destinado ao processamento e à quantificação de imagens microscópicas, permitindo a captação direta das imagens geradas por meio de lupas, microscópios eletrônicos ou câmeras de vídeo. O SIARCS foi desenvolvido pela Embrapa Instrumentação Agropecuária para tornar mais ágil o processo de captação de dados de um sistema. Este trabalho apresenta os fundamentos teóricos básicos envolvidos na técnica de análise de imagens, com as principais características dos softwares citados acima e sua aplicação na quantificação da taxa de crescimento e da cobertura do solo por espécies vegetais. ABSTRACT: Several methods exist to evaluate the growth of the vegetation and the tax of covering of the soil. Necessary and fast measures can be obtained of the digital treatment of generated images of photographic cameras or of video. There is available, in the market, several processors of images that you/they present similar basic functions, but with certain particularities that can bring larger benefit for the user, depending on the application. SPRING, developed by INPE, it is public domain, being including than a processor of images, including functions. ENVI was developed for the analysis of images multiespectrais and hiperespectrais, could also be used for the processing of obtained images of video cameras, for instance. The KS-300 it is a hardware group and software destined to the processing and quantification of microscopic images, allowing the direct reception of the images generated through magnifying glasses, eletronic microscopes or video cameras. SIARCS was developed by Embrapa Agricultural Instrumentation to turn more agile the process of reception of data of a system. This work presents the basic theoretical foundations involved in the technique of analysis of images, with the main characteristics of the softwares mentioned above and his application in the quantification of the growth tax and of the covering of the soil for vegetable species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In many multi-camera vision systems the effect of camera locations on the task-specific quality of service is ignored. Researchers in Computational Geometry have proposed elegant solutions for some sensor location problem classes. Unfortunately, these solutions utilize unrealistic assumptions about the cameras' capabilities that make these algorithms unsuitable for many real-world computer vision applications: unlimited field of view, infinite depth of field, and/or infinite servo precision and speed. In this paper, the general camera placement problem is first defined with assumptions that are more consistent with the capabilities of real-world cameras. The region to be observed by cameras may be volumetric, static or dynamic, and may include holes that are caused, for instance, by columns or furniture in a room that can occlude potential camera views. A subclass of this general problem can be formulated in terms of planar regions that are typical of building floorplans. Given a floorplan to be observed, the problem is then to efficiently compute a camera layout such that certain task-specific constraints are met. A solution to this problem is obtained via binary optimization over a discrete problem space. In experiments the performance of the resulting system is demonstrated with different real floorplans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scene flow methods estimate the three-dimensional motion field for points in the world, using multi-camera video data. Such methods combine multi-view reconstruction with motion estimation approaches. This paper describes an alternative formulation for dense scene flow estimation that provides convincing results using only two cameras by fusing stereo and optical flow estimation into a single coherent framework. To handle the aperture problems inherent in the estimation task, a multi-scale method along with a novel adaptive smoothing technique is used to gain a regularized solution. This combined approach both preserves discontinuities and prevents over-regularization-two problems commonly associated with basic multi-scale approaches. Internally, the framework generates probability distributions for optical flow and disparity. Taking into account the uncertainty in the intermediate stages allows for more reliable estimation of the 3D scene flow than standard stereo and optical flow methods allow. Experiments with synthetic and real test data demonstrate the effectiveness of the approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel method for 3D head tracking in the presence of large head rotations and facial expression changes is described. Tracking is formulated in terms of color image registration in the texture map of a 3D surface model. Model appearance is recursively updated via image mosaicking in the texture map as the head orientation varies. The resulting dynamic texture map provides a stabilized view of the face that can be used as input to many existing 2D techniques for face recognition, facial expressions analysis, lip reading, and eye tracking. Parameters are estimated via a robust minimization procedure; this provides robustness to occlusions, wrinkles, shadows, and specular highlights. The system was tested on a variety of sequences taken with low quality, uncalibrated video cameras. Experimental results are reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fundamental task of vision systems is to infer the state of the world given some form of visual observations. From a computational perspective, this often involves facing an ill-posed problem; e.g., information is lost via projection of the 3D world into a 2D image. Solution of an ill-posed problem requires additional information, usually provided as a model of the underlying process. It is important that the model be both computationally feasible as well as theoretically well-founded. In this thesis, a probabilistic, nonlinear supervised computational learning model is proposed: the Specialized Mappings Architecture (SMA). The SMA framework is demonstrated in a computer vision system that can estimate the articulated pose parameters of a human body or human hands, given images obtained via one or more uncalibrated cameras. The SMA consists of several specialized forward mapping functions that are estimated automatically from training data, and a possibly known feedback function. Each specialized function maps certain domains of the input space (e.g., image features) onto the output space (e.g., articulated body parameters). A probabilistic model for the architecture is first formalized. Solutions to key algorithmic problems are then derived: simultaneous learning of the specialized domains along with the mapping functions, as well as performing inference given inputs and a feedback function. The SMA employs a variant of the Expectation-Maximization algorithm and approximate inference. The approach allows the use of alternative conditional independence assumptions for learning and inference, which are derived from a forward model and a feedback model. Experimental validation of the proposed approach is conducted in the task of estimating articulated body pose from image silhouettes. Accuracy and stability of the SMA framework is tested using artificial data sets, as well as synthetic and real video sequences of human bodies and hands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scene flow methods estimate the three-dimensional motion field for points in the world, using multi-camera video data. Such methods combine multi-view reconstruction with motion estimation. This paper describes an alternative formulation for dense scene flow estimation that provides reliable results using only two cameras by fusing stereo and optical flow estimation into a single coherent framework. Internally, the proposed algorithm generates probability distributions for optical flow and disparity. Taking into account the uncertainty in the intermediate stages allows for more reliable estimation of the 3D scene flow than previous methods allow. To handle the aperture problems inherent in the estimation of optical flow and disparity, a multi-scale method along with a novel region-based technique is used within a regularized solution. This combined approach both preserves discontinuities and prevents over-regularization – two problems commonly associated with the basic multi-scale approaches. Experiments with synthetic and real test data demonstrate the strength of the proposed approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Establishing correspondences among object instances is still challenging in multi-camera surveillance systems, especially when the cameras’ fields of view are non-overlapping. Spatiotemporal constraints can help in solving the correspondence problem but still leave a wide margin of uncertainty. One way to reduce this uncertainty is to use appearance information about the moving objects in the site. In this paper we present the preliminary results of a new method that can capture salient appearance characteristics at each camera node in the network. A Latent Dirichlet Allocation (LDA) model is created and maintained at each node in the camera network. Each object is encoded in terms of the LDA bag-of-words model for appearance. The encoded appearance is then used to establish probable matching across cameras. Preliminary experiments are conducted on a dataset of 20 individuals and comparison against Madden’s I-MCHR is reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Moving cameras are needed for a wide range of applications in robotics, vehicle systems, surveillance, etc. However, many foreground object segmentation methods reported in the literature are unsuitable for such settings; these methods assume that the camera is fixed and the background changes slowly, and are inadequate for segmenting objects in video if there is significant motion of the camera or background. To address this shortcoming, a new method for segmenting foreground objects is proposed that utilizes binocular video. The method is demonstrated in the application of tracking and segmenting people in video who are approximately facing the binocular camera rig. Given a stereo image pair, the system first tries to find faces. Starting at each face, the region containing the person is grown by merging regions from an over-segmented color image. The disparity map is used to guide this merging process. The system has been implemented on a consumer-grade PC, and tested on video sequences of people indoors obtained from a moving camera rig. As can be expected, the proposed method works well in situations where other foreground-background segmentation methods typically fail. We believe that this superior performance is partly due to the use of object detection to guide region merging in disparity/color foreground segmentation, and partly due to the use of disparity information available with a binocular rig, in contrast with most previous methods that assumed monocular sequences.