906 resultados para CALS Continuous Acquisition and Life Cycle Support
Resumo:
This research aims at assessing the environmental impact of the poultry supply chain from cradle to grave using case study research and also life cycle assessment (LCA). While a limited number of generic poultry production LCA studies have been published, fewer yet assess the whole process of a specific organisation, none comparing the increased impact of further processing. Our results show that irrespectively of the impact assessment method utilised, the process of producing portions is considerably higher in total environmental impact due to the extra raw material required to produce the same mass into retail. Our research contributes to the growing number of LCA studies and could be used by practitioners for comparison against national and international averages. From a theoretical point of view, this research provides new insights into the relationship between vertically integrated supply chains and environmental performance which has not been examined in the past.
Resumo:
The UK government aims at achieving 80% CO2 emission reduction by 2050 which requires collective efforts across all the UK industry sectors. In particular, the housing sector has a large potential to contribute to achieving the aim because the housing sector alone accounts for 27% of the total UK CO2 emission, and furthermore, 87% of the housing which is responsible for current 27% CO2 emission will still stand in 2050. Therefore, it is essential to improve energy efficiency of existing housing stock built with low energy efficiency standard. In order for this, a whole‐house needs to be refurbished in a sustainable way by considering the life time financial and environmental impacts of a refurbished house. However, the current refurbishment process seems to be challenging to generate a financially and environmentally affordable refurbishment solution due to the highly fragmented nature of refurbishment practice and a lack of knowledge and skills about whole‐house refurbishment in the construction industry. In order to generate an affordable refurbishment solution, diverse information regarding costs and environmental impacts of refurbishment measures and materials should be collected and integrated in right sequences throughout the refurbishment project life cycle among key project stakeholders. Consequently, various researchers increasingly study a way of utilizing Building Information Modelling (BIM) to tackle current problems in the construction industry because BIM can support construction professionals to manage construction projects in a collaborative manner by integrating diverse information, and to determine the best refurbishment solution among various alternatives by calculating the life cycle costs and lifetime CO2 performance of a refurbishment solution. Despite the capability of BIM, the BIM adoption rate is low with 25% in the housing sector and it has been rarely studied about a way of using BIM for housing refurbishment projects. Therefore, this research aims to develop a BIM framework to formulate a financially and environmentally affordable whole‐house refurbishment solution based on the Life Cycle Costing (LCC) and Life Cycle Assessment (LCA) methods simultaneously. In order to achieve the aim, a BIM feasibility study was conducted as a pilot study to examine whether BIM is suitable for housing refurbishment, and a BIM framework was developed based on the grounded theory because there was no precedent research. After the development of a BIM framework, this framework was examined by a hypothetical case study using BIM input data collected from questionnaire survey regarding homeowners’ preferences for housing refurbishment. Finally, validation of the BIM framework was conducted among academics and professionals by providing the BIM framework and a formulated refurbishment solution based on the LCC and LCA studies through the framework. As a result, BIM was identified as suitable for housing refurbishment as a management tool, and it is timely for developing the BIM framework. The BIM framework with seven project stages was developed to formulate an affordable refurbishment solution. Through the case study, the Building Regulation is identified as the most affordable energy efficiency standard which renders the best LCC and LCA results when it is applied for whole‐house refurbishment solution. In addition, the Fabric Energy Efficiency Standard (FEES) is recommended when customers are willing to adopt high energy standard, and the maximum 60% of CO2 emissions can be reduced through whole‐house fabric refurbishment with the FEES. Furthermore, limitations and challenges to fully utilize BIM framework for housing refurbishment were revealed such as a lack of BIM objects with proper cost and environmental information, limited interoperability between different BIM software and limited information of LCC and LCA datasets in BIM system. Finally, the BIM framework was validated as suitable for housing refurbishment projects, and reviewers commented that the framework can be more practical if a specific BIM library for housing refurbishment with proper LCC and LCA datasets is developed. This research is expected to provide a systematic way of formulating a refurbishment solution using BIM, and to become a basis for further research on BIM for the housing sector to resolve the current limitations and challenges. Future research should enhance the BIM framework by developing more detailed process map and develop BIM objects with proper LCC and LCA Information.
Resumo:
Computer software plays an important role in business, government, society and sciences. To solve real-world problems, it is very important to measure the quality and reliability in the software development life cycle (SDLC). Software Engineering (SE) is the computing field concerned with designing, developing, implementing, maintaining and modifying software. The present paper gives an overview of the Data Mining (DM) techniques that can be applied to various types of SE data in order to solve the challenges posed by SE tasks such as programming, bug detection, debugging and maintenance. A specific DM software is discussed, namely one of the analytical tools for analyzing data and summarizing the relationships that have been identified. The paper concludes that the proposed techniques of DM within the domain of SE could be well applied in fields such as Customer Relationship Management (CRM), eCommerce and eGovernment. ACM Computing Classification System (1998): H.2.8.
Resumo:
A study was conducted in order to describe and understand the occupational role behavior of gay men with particular interest on understanding the impact of an HIV diagnosis on their roles and life satisfaction. A 137-item questionnaire was developed for this study and distributed through various gay community groups in south Florida. The process resulted in ranked description of 24 valued occupational roles of gay men (n = 80) along with a general understanding of potential shifts that may occur in those roles as a result of becoming infected with HIV. The study concludes that a diagnosis of HIV infection impacts gay men both by altering their value for particular roles and by darkening the images they hold of their future. The study also identified key factors which may contribute to the greater life satisfaction of gay men including greater confidence in personal knowledge of HIV, a more optimistic outlook an life, the use of stronger coping styles, and perceiving stronger social support and lower stress. ^
Resumo:
The purpose of this qualitative case study was to gain an understanding of the phenomenon of academic orientation by seeking the insights into an inner-city Haitian-American middle school student's attitudes and world view toward education and life. A phenomenological approach was used in order to explore the way in which Cindy, a minority student, gives meaning to her lived-experiences in terms of her desire to meet academic expectations and her ability to overcome social adversity and/or other risk factors.^ The study attempted to answer the following two research questions: (1) What provides the focus for Cindy's (the subject's) approach to her school work and/or life? (2) What are the processes that give meaning and direction to academic orientation and life for Cindy? In-depth interviewing was the primary method of data collection. In addition, journal and sketchbook entries and school district records were used and classroom observations made.^ The nature of the study to understand lived-experience facilitated the use of the case study method and a phenomenological method of description. Data analysis was conducted by means of an adapted form of the constant comparative approach. Patterns in the data which emerged were coded and categorized according to underlying generative themes. Phenomenological reflection and analysis were used to grasp the experiential structures of Cindy's experience. The following textural themes were identified and confirmed to be essential themes to Cindy's experience: personal challenge to do her best, personal challenge to want to learn, having a sense of determination, being able to think for self, having a disposition to like self, achieving self-respect through performance, seeing a need to help others, being intrinsically motivated, being an independent learner, attending more to academic pressure and less to peer pressure, having motivational catalysts in her life, learning and support opportunities, and having a self-culture. Using Mahrer's humanistic theory of experiencing, Cindy's development was interpreted in terms of her progression through a sequence of developmental plateaus: externalized self, internalized self, and integrating and actualizing self.^ The findings of this study were that Cindy's desire to meet academic expectations is guided by a meaning construction internal frame of reference. High expectations of self in conjunction with other protective factors found in Cindy's home and school environments were also found to be linked to her educational resilience and success. Cindy's lived-experiences were also found to be related to Mahrer's theory of human development. In addition, it was concluded that "minority" students do not all fit into social categories and labels. ^
Resumo:
Construction projects are complex endeavors that require the involvement of different professional disciplines in order to meet various project objectives that are often conflicting. The level of complexity and the multi-objective nature of construction projects lend themselves to collaborative design and construction such as integrated project delivery (IPD), in which relevant disciplines work together during project conception, design and construction. Traditionally, the main objectives of construction projects have been to build in the least amount of time with the lowest cost possible, thus the inherent and well-established relationship between cost and time has been the focus of many studies. The importance of being able to effectively model relationships among multiple objectives in building construction has been emphasized in a wide range of research. In general, the trade-off relationship between time and cost is well understood and there is ample research on the subject. However, despite sustainable building designs, relationships between time and environmental impact, as well as cost and environmental impact, have not been fully investigated. The objectives of this research were mainly to analyze and identify relationships of time, cost, and environmental impact, in terms of CO2 emissions, at different levels of a building: material level, component level, and building level, at the pre-use phase, including manufacturing and construction, and the relationships of life cycle cost and life cycle CO2 emissions at the usage phase. Additionally, this research aimed to develop a robust simulation-based multi-objective decision-support tool, called SimulEICon, which took construction data uncertainty into account, and was capable of incorporating life cycle assessment information to the decision-making process. The findings of this research supported the trade-off relationship between time and cost at different building levels. Moreover, the time and CO2 emissions relationship presented trade-off behavior at the pre-use phase. The results of the relationship between cost and CO2 emissions were interestingly proportional at the pre-use phase. The same pattern continually presented after the construction to the usage phase. Understanding the relationships between those objectives is a key in successfully planning and designing environmentally sustainable construction projects.
Resumo:
The rise of the twenty-first century has seen the further increase in the industrialization of Earth’s resources, as society aims to meet the needs of a growing population while still protecting our environmental and natural resources. The advent of the industrial bioeconomy – which encompasses the production of renewable biological resources and their conversion into food, feed, and bio-based products – is seen as an important step in transition towards sustainable development and away from fossil fuels. One sector of the industrial bioeconomy which is rapidly being expanded is the use of biobased feedstocks in electricity production as an alternative to coal, especially in the European Union.
As bioeconomy policies and objectives increasingly appear on political agendas, there is a growing need to quantify the impacts of transitioning from fossil fuel-based feedstocks to renewable biological feedstocks. Specifically, there is a growing need to conduct a systems analysis and potential risks of increasing the industrial bioeconomy, given that the flows within it are inextricably linked. Furthermore, greater analysis is needed into the consequences of shifting from fossil fuels to renewable feedstocks, in part through the use of life cycle assessment modeling to analyze impacts along the entire value chain.
To assess the emerging nature of the industrial bioeconomy, three objectives are addressed: (1) quantify the global industrial bioeconomy, linking the use of primary resources with the ultimate end product; (2) quantify the impacts of the expaning wood pellet energy export market of the Southeastern United States; (3) conduct a comparative life cycle assessment, incorporating the use of dynamic life cycle assessment, of replacing coal-fired electricity generation in the United Kingdom with wood pellets that are produced in the Southeastern United States.
To quantify the emergent industrial bioeconomy, an empirical analysis was undertaken. Existing databases from multiple domestic and international agencies was aggregated and analyzed in Microsoft Excel to produce a harmonized dataset of the bioeconomy. First-person interviews, existing academic literature, and industry reports were then utilized to delineate the various intermediate and end use flows within the bioeconomy. The results indicate that within a decade, the industrial use of agriculture has risen ten percent, given increases in the production of bioenergy and bioproducts. The underlying resources supporting the emergent bioeconomy (i.e., land, water, and fertilizer use) were also quantified and included in the database.
Following the quantification of the existing bioeconomy, an in-depth analysis of the bioenergy sector was conducted. Specifically, the focus was on quantifying the impacts of the emergent wood pellet export sector that has rapidly developed in recent years in the Southeastern United States. A cradle-to-gate life cycle assessment was conducted in order to quantify supply chain impacts from two wood pellet production scenarios: roundwood and sawmill residues. For reach of the nine impact categories assessed, wood pellet production from sawmill residues resulted in higher values, ranging from 10-31% higher.
The analysis of the wood pellet sector was then expanded to include the full life cycle (i.e., cradle-to-grave). In doing to, the combustion of biogenic carbon and the subsequent timing of emissions were assessed by incorporating dynamic life cycle assessment modeling. Assuming immediate carbon neutrality of the biomass, the results indicated an 86% reduction in global warming potential when utilizing wood pellets as compared to coal for electricity production in the United Kingdom. When incorporating the timing of emissions, wood pellets equated to a 75% or 96% reduction in carbon dioxide emissions, depending upon whether the forestry feedstock was considered to be harvested or planted in year one, respectively.
Finally, a policy analysis of renewable energy in the United States was conducted. Existing coal-fired power plants in the Southeastern United States were assessed in terms of incorporating the co-firing of wood pellets. Co-firing wood pellets with coal in existing Southeastern United States power stations would result in a nine percent reduction in global warming potential.
Resumo:
One challenge related to transit planning is selecting the appropriate mode: bus, light rail transit (LRT), regional express rail (RER), or subway. This project uses data from life cycle assessment to develop a tool to measure energy requirements for different modes of transit, on a per passenger-kilometer basis. For each of the four transit modes listed, a range of energy requirements associated with different vehicle models and manufacturers was developed. The tool demonstrated that there are distinct ranges where specific transit modes are the best choice. Diesel buses are the clear best choice from 7-51 passengers, LRTs make the most sense from 201-427 passengers, and subways are the best choice above 918 passengers. There are a number of other passenger loading ranges where more than one transit mode makes sense; in particular, LRT and RER represent very energy-efficient options for ridership ranging from 200 to 900 passengers. The tool developed in the thesis was used to analyze the Bloor-Danforth subway line in Toronto using estimated ridership for weekday morning peak hours. It was found that ridership across the line is for the most part actually insufficient to justify subways over LRTs or RER. This suggests that extensions to the existing Bloor-Danforth line should consider LRT options, which could service the passenger loads at the ends of the line with far greater energy efficiency. It was also clear that additional destinations along the entire transit line are necessary to increase the per passenger-kilometer energy efficiency, as the current pattern of commuting to downtown leaves much of the system underutilized. It is hoped that the tool developed in this thesis can be used as an additional resource in the transit mode decision-making process for many developing transportation systems, including the transit systems across the GTHA.
Resumo:
Emiliania huxleyi is the most abundant calcifying plankton in modern oceans with substantial intraspecific genome variability and a biphasic life cycle involving sexual alternation between calcified 2N and flagellated 1N cells. We show that high genome content variability in Emiliania relates to erosion of 1N-specific genes and loss of the ability to form flagellated cells. Analysis of 185 E. huxleyi strains isolated from world oceans suggests that loss of flagella occurred independently in lineages inhabiting oligotrophic open oceans over short evolutionary timescales. This environmentally linked physiogenomic change suggests life cycling is not advantageous in very large/diluted populations experiencing low biotic pressure and low ecological variability. Gene loss did not appear to reflect pressure for genome streamlining in oligotrophic oceans as previously observed in picoplankton. Life-cycle modifications might be common in plankton and cause major functional variability to be hidden from traditional taxonomic or molecular markers.
Resumo:
Emiliania huxleyi is the most abundant calcifying plankton in modern oceans with substantial intraspecific genome variability and a biphasic life cycle involving sexual alternation between calcified 2N and flagellated 1N cells. We show that high genome content variability in Emiliania relates to erosion of 1N-specific genes and loss of the ability to form flagellated cells. Analysis of 185 E. huxleyi strains isolated from world oceans suggests that loss of flagella occurred independently in lineages inhabiting oligotrophic open oceans over short evolutionary timescales. This environmentally linked physiogenomic change suggests life cycling is not advantageous in very large/diluted populations experiencing low biotic pressure and low ecological variability. Gene loss did not appear to reflect pressure for genome streamlining in oligotrophic oceans as previously observed in picoplankton. Life-cycle modifications might be common in plankton and cause major functional variability to be hidden from traditional taxonomic or molecular markers.
Resumo:
Rapid, non-intrusive surface wave surveys provide depth profiles from which ground models can be generated for use in earthwork condition assessment. Stiffness throughout earthworks controls the behaviour under static and dynamic loads, and characterising heterogeneity is of interest in relation to the stability of engineered backfill and life-cycle deterioration in aged utility and transportation infrastructure. Continuous surface wave methods were used to identify interfaces between fine- and coarse-grained fill in an end-tipped embankment along the Great Central Railway in Nottinghamshire, UK. Multichannel analysis of surface wave (MASW) methods were used to characterise subsurface voiding in a canal embankment along the Knottingley and Goole canal near Eggborough, Yorkshire. MASW methods are currently being used to study extreme weather impacts on the stability of a highplasticity clay embankment along the Gloucestershire–Warwickshire railway near Laverton. Optimal results were obtained using equipment capable of generating and detecting over wide frequency ranges.
Resumo:
The current energy market requires urgent revision for the introduction of renewable, less-polluting and inexpensive energy sources. Biohydrogen (bioH2) is considered to be one of the most appropriate options for this model shift, being easily produced through the anaerobic fermentation of carbohydrate-containing biomass. Ideally, the feedstock should be low-cost, widely available and convertible into a product of interest. Microalgae are considered to possess the referred properties, being also highly valued for their capability to assimilate CO2 [1]. The microalga Spirogyra sp. is able to accumulate high concentrations of intracellular starch, a preferential carbon source for some bioH2 producing bacteria such as Clostridium butyricum [2]. In the present work, Spirogyra biomass was submitted to acid hydrolysis to degrade polymeric components and increase the biomass fermentability. Initial tests of bioH2 production in 120 mL reactors with C. butyricum yielded a maximum volumetric productivity of 141 mL H2/L.h and a H2 production yield of 3.78 mol H2/mol consumed sugars. Subsequently, a sequential batch reactor (SBR) was used for the continuous H2 production from Spirogyra hydrolysate. After 3 consecutive batches, the fermentation achieved a maximum volumetric productivity of 324 mL H2/L.h, higher than most results obtained in similar production systems [3] and a potential H2 production yield of 10.4 L H2/L hydrolysate per day. The H2 yield achieved in the SBR was 2.59 mol H2/mol, a value that is comparable to those attained with several thermophilic microorganisms [3], [4]. In the present work, a detailed energy consumption of the microalgae value-chain is presented and compared with previous results from the literature. The specific energy requirements were determined and the functional unit considered was gH2 and MJH2. It was possible to identify the process stages responsible for the highest energy consumption during bioH2 production from Spirogyra biomass for further optimisation.
Resumo:
Microalgae are an attractive way to produce biofuels due to the ability to accumulate lipids and very high photosynthetic yields. This article presents a review of life-cycle assessment studies of microalgae biodiesel production, including an analysis of modeling choices and assumptions. A high variation in GHG emissions (between -0.75 and 2.9 kg CO2eq MJ-1) was found and the main causes were investigated, namely modeling choices (e.g. the approach used to deal with multifunctionality), and a high parameter uncertainty in microalgae cultivation, harvesting and oil extraction processes.
Resumo:
Tämä diplomityö tutkii eri elinkaarihallinnan menetelmiä ja vertaa niitä TVO:n menetelmiin. Lisäksi TVO:n prosessin ongelmakohdat tunnistetaan ja niihin esitetään ratkaisuja. Vertailukohteina toimii ydinvoimateollisuuden lisäksi vesivoima, fossiiliset voimalaitokset sekä paperiteollisuus. Sähkön hinnan jatkaessa laskuaan on elinkaariajattelusta tullut ajankohtaista myös ydinvoimayhtiöille. Ydinvoimalaitoksien pitkän suunnitellun käyttöiän ansiosta laitoksen elinkaaren aikana voi tapahtua useita asioita, jotka vaikuttavat laitoksen investointitarpeisiin. Turvallisen sähköntuotannon varmistamiseksi eri laitososia on joko muokattava tai uusittava. Elinkaariajatteluun kuuluu tehokas laitoksen kunnon valvonta, laitoksen ikääntymiseen vaikuttavien ilmiöiden tunnistaminen, sekä ikääntymistä hillitsevien toimenpiteiden pitkän tähtäimen suunnittelu. Hyvällä ennakkosuunnittelulla pyritään varmistamaan se, että laitoksella voidaan tuottaa sähköä koko sen jäljellä olevan käyttöiän aikana. Kun tarpeiden tunnistus ja suunnittelu tehdään hyvissä ajoin mahdollistetaan myös investointien optimointi. Paras hyöty pyritään saamaan ajoittamalla oikeat investoinnit oikeaan aikaan.
Resumo:
In this document, we wish to describe statistics, data and the importance of the 13th CONTECSI – International Conference on Information Systems and Technology Management, which took place in the University of São Paulo, from June 1st through 3rd and was organized by TECSI/EAC/FEA/USP/ECA/POLI. This report presents statistics of the 13th CONTECSI, Goals and Objectives, Program, Plenary Sessions, Doctoral Consortium, Parallel Sessions, Honorable Mentions and Committees. We would like to point out the huge importance of the financial aid given by CAPES, CNPq, FAPESP, as well as the support of FEA USP, POLI USP, ECA USP, ANPAD, AIS, ISACA, UNINOVE, Mackenzie, Universidade do Porto, Rutgers School/USA, São Paulo Convention Bureau and CCINT-FEA-USP.